

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Slave

Welcome to Slave

This is the documentation of the Slave library, a micro framework designed to
simplify instrument communication and control. It is divided into three parts,
a quick overview, the user guide and of
course the api reference.

Overview

Slave provides an intuitive way of creating instrument api’s, inspired by
object relational mappers.

from slave.iec60488 import IEC60488, PowerOn
from slave.core import Command
from slave.types import Integer, Enum

class Device(IEC60488, PowerOn):
 """An iec60488 conforming device api with additional commands."""
 def __init__(self, transport):
 super(Device, self).__init__(transport)
 # A custom command
 self.my_command = Command(
 'QRY?', # query message header
 'WRT', # command message header
 # response and command data type
 [Integer, Enum('first', 'second')]
)

Commands mimic instance attributes. Read access queries the device, parses and
converts the response and finally returns it. Write access parses and converts
the arguments and sends them to the device. This leads to very intuitive
interfaces.

Several device drivers are already implemented, and many more are under
development. A short usage example is given below

#!/usr/bin/env python
import time

from slave.srs import SR830
from slave.transport import Visa

lockin = SR830(Visa('GPIB::08'))
lockin.frequency = 22.08
lockin.amplitude = 5.0
lockin.reserve = 'high'
for i in xrange(60):
 print lockin.x
 time.sleep(1)

For a complete list of built-in device drivers, see Built-in Device Drivers.

User Guide

	Installing Slave
	Installing from source

	Installing the latest development version

	slave Changelog
	Version 0.4.0

	Quickstart

	The transport object
	The interface

	Adapters

	Simulating a transport

	Implementing custom transports

	Logging

	Built-in Device Drivers
	Lock-in Amplifiers

	Temperature Controllers

	Magnet Power Supplies

	Cryostats

	Implementing Custom Device Drivers
	First Steps

	The IEC60488-2 standard

	Asynchronous IO
	A simple asynchronous poller

	Usage Examples
	Simple Measurement

	Magnetotransport Measurement

API Reference

This part of the documentation covers the complete api of the slave library.

	API
	slave Package

	transport Module

	protocol Module

	core Module

	cryomagnetics Module

	iec60488 Module

	lakeshore Module

	misc Module

	quantum_design Module

	signal_recovery Module

	srs Module

	types Module

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Marco Halder.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Slave

Installing Slave

Installation is quite easy. The latest stable version is available on the
python package index [https://pypi.python.org/pypi/slave] or github [https://github.com/p3trus/slave/tags]. It can be installed with the package
managers pip or easy_install via:

pip install slave

or:

easy_install slave

Installing from source

To install it from source, download and extract it and execute:

python setup.py install

Installing the latest development version

To work with the latest version of slave, clone the github repository and
install it in development mode:

git clone git://github.com/p3trus/slave.git
cd slave
python setup.py develop

 Copyright 2012, Marco Halder.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Slave

slave Changelog

Here you can see the full list of changes between each slave release.

Version 0.4.0

Note: This release breaks backwards compatibility.

	Changed the notation of a connection to transport. This name is more
widely used, see e.g. twisted, or asyncio.

	Removed the direct usage of the transport object in device driver methods.
Now almost all methods use the InstrumentBase._query() and
InstrumentBase._write() methods.

There are only a few exceptions:

	slave.srs.sr830.SR830.trace()

	slave.srsr.sr830.SR830.snap()

	slave.srs.sr850.MarkList.active()

	Renamed slave.core.InstrumentBase._cfg attribute to _protocol and in all
dependant cases.

Changes to the slave.core module:

	The InstrumentBase.transport`attribute was renamed to `_transport to be
more consistent. This avoids shadowing of possible commands and show the
intent that in general the transport should not be used directly.

Changes to the slave.lakeshore.ls340 module:

	The slave.lakeshore.ls340.Curve.delete() method now raises a
RuntimeError when called on a read-only curve.

	The slave.lakeshore.ls340.LS340._factory_defaults() method does not take
the boolean confirm argument anymore. The trailing underscore should be
warning enough that you know what you’re doing.

Changes to the slave.lakeshore.ls370 module:

	Implemented the missing relay commands LS370.low_relay and
LS370.high_relay.

 Copyright 2012, Marco Halder.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Slave

Quickstart

Using slave is easy. The following example shows how device drivers are used.
We are going to implement a short measurement script, which initializes a
Stanford Research SR830 lock-in amplifier and performs a measurement.

The first step is to initialize a transport to the lock-in amplifier. Here we
are using pyvisa [http://pyvisa.sourceforge.net/] to establish a GPIB
transport with the device at primary address 8.

from slave.transport import Visa
transport = Visa('GPIB::08')

Slave does not communicate directly with the device. It uses an object referred
to as transport object for the low level
communication (see The transport object for a detailed explanation).

In the next step, we construct a SR830 instance and
inject the pyvisa [http://pyvisa.sourceforge.net/] transport.

from slave.srs import SR830

lockin = SR830(transport)

This creates a fully functional, high level interface to the lock-in amplifier.
Before we start the actual measurement, we’re going to configure the lock-in.

lockin.frequency = 22.08 # Set the internal frequency generator to 22.08 Hz
lockin.amplitude = 5.0 # Use an amplitude of 5 V
lockin.reserve = 'high'

And finally measure 60 times, waiting one second between each measurement, and
print the result.

import time

for i in xrange(60):
 print lockin.x
 time.sleep(1)

Putting it all together, we get a small 13 line script, capable of performing a
complete measurement.

#!/usr/bin/env python
import time

from slave.srs import SR830
from slave.transport import Visa

lockin = SR830(Visa('GPIB::08'))
lockin.frequency = 22.08
lockin.amplitude = 5.0
lockin.reserve = 'high'
for i in xrange(60):
 print lockin.x
 time.sleep(1)

 Copyright 2012, Marco Halder.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Slave

The transport object

The interface

Slave does not communicate with a device directly. It uses an object referred
to as transport object. This abstraction makes it possible to use the same
device drivers with different types of transports (e.g. rs232, GPIB, usb,
serial, ...). As long as an object conforms to the transport interface it
can be used with slave.

The interface is quite simple. Just two methods are required. They are defined
as follows:

	
Transport.ask(command)

	Takes a command string and returns a string response.

	
Transport.write(command)

	Takes a command string.

Adapters

To enhance the compatibility with different communication libraries, the
slave.transport module implements several adapter classes.
These are

	Class
	Description
	Notes

	GpibDevice
	A transport object wrapping the Linux-gpib driver.
	Linux only

	TCPIPDevice
	A tiny wrapper around a socket transport.
	

	UsbTmcDevice
	A transport object, wrapping a usbtmc file descriptor.
	Linux only

Simulating a transport

Slave has a rudimentary simulation mode. Just use the
SimulatedTransport instead of an actual transport.
An example is shown below:

from slave.transport import SimulatedTransport
from slave.srs import SR380

lockin = SR830(SimulatedTransport())
print lockin.x # prints a random float

A simple algorithm is used to create the responses.

For read-only commands, the response is randomly created with each query, since
these typically represent measured values. For read and writable commands, the
response is created just once and cached afterwards. Repeated queries will
return the same result unless a write was issued.

Implementing custom transports

 Copyright 2012, Marco Halder.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Slave

Logging

Slave makes use of python’s standard logging module. It is quite useful for
development of new device drivers and diagnosing of communication errors.

You can use it in the following way:

import logging

logging.basicConfig(filename='log.txt', filemode='w', level=logging.DEBUG)

Now use slave ...

 Copyright 2012, Marco Halder.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Slave

Built-in Device Drivers

Slave ships with several completely implemented device drivers.

Lock-in Amplifiers

	Manufacturer
	Model
	Class

	Lakeshore
	LS370 AC Resistance Bridge
	slave.lakeshore.ls370.LS370

	Signal Recovery
	SR7225
	slave.signal_recovery.sr7225.SR7225

	Signal Recovery
	SR7230
	slave.signal_recovery.sr7230.SR7230

	Stanford Research
	SR830
	slave.srs.sr830.SR830

	Stanford Research
	SR850
	slave.srs.sr850.SR850

Temperature Controllers

	Manufacturer
	Model
	Class

	Lakeshore
	LS340
	slave.lakeshore.LS340

Magnet Power Supplies

	Manufacturer
	Model
	Class

	CryoMagnetics Inc.
	Magnet Power Supply Model 4G
	slave.cryomagnetics.MPS4G

Cryostats

	Manufacturer
	Model
	Class

	Quantum Design
	PPMS Model 6000
	slave.quantum_design.PPMS

 Copyright 2012, Marco Halder.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Slave

Implementing Custom Device Drivers

Implementing custom device drivers is straight forward. The following sections
will guide you through several use cases. We will implement a driver for an
imaginary device, extending it’s interface step-by-step, showing more and more
functionality and tricks.

Note

When developing new device drivers, it is useful to enable logging. See
Logging for more information.

First Steps

Let’s assume we’ve got a simple device supporting the following commands:

	‘ENABLED <on/off>’ – Enables/disables the control loop of the device.
<on/off> is either 0 or 1.

	‘ENABLED?’ – returns <on/off>

A possible implementation could look like this:

from slave.core import Command, InstrumentBase
from slave.types import Boolean

class Device(InstrumentBase):
 def __init__(self, transport):
 super(Device, self).__init__(transport)
 self.enabled = Command('ENABLED?', 'ENABLED', Boolean())

Now let’s try it. We’re using a SimulatedTransport here (see
Simulating a transport for a detailed explanation):

>>> from slave.core import SimulatedTransport
>>> device = Device(SimulatedTransport())
>>> device.enabled = False
>>> device.enabled
False

It looks as if an instance variable with the name ‘enabled’ and a value of
False was created. But this is not the case. We can check it with the
following line:

>>> type(device.__dict__['enabled'])
<class 'slave.core.Command'>

The assignment did not overwrite the Command attribute. Instead, the
InstrumentBase base class forwarded the False to the
write() method of the Command. The
write() method then created the command message
‘ENABLED 0’, using the Boolean type to convert the
False and passed it to the transport’s
write() method. Likewise the read call was
forwarded to the Command‘s query method.

The IEC60488-2 standard

The IEC 60488-2 [http://dx.doi.org/10.1109/IEEESTD.2004.95390] describes a standard digital interface for programmable
instrumentation. It is used by devices connected via the IEEE 488.1 bus,
commonly known as GPIB. It is an adoption of the IEEE std. 488.2-1992
standard.

The IEC 60488-2 [http://dx.doi.org/10.1109/IEEESTD.2004.95390] requires the existence of several commands which are
logically grouped.

	Reporting Commands

	
	*CLS - Clears the data status structure [1] .

	*ESE - Write the event status enable register [2] .

	*ESE? - Query the event status enable register [3] .

	*ESR? - Query the standard event status register [4] .

	*SRE - Write the status enable register [5] .

	*SRE? - Query the status enable register [6] .

	*STB - Query the status register [7] .

	Internal operation commands

	
	*IDN? - Identification query [8] .

	*RST - Perform a device reset [9] .

	*TST? - Perform internal self-test [10] .

	Synchronization commands

	
	*OPC - Set operation complete flag high [11] .

	*OPC? - Query operation complete flag [12] .

	*WAI - Wait to continue [13] .

To ease development, these are implemented in the
IEC60488 base class. To implement a IEC 60488-2 [http://dx.doi.org/10.1109/IEEESTD.2004.95390]
compliant device driver, you only have to inherit from it and implement the
device specific commands, e.g:

from slave.core import Command
from slave.iec60488 import IEC60488

class CustomDevice(IEC60488):
 pass

This is everything you need to do to implement the required IEC 60488-2 [http://dx.doi.org/10.1109/IEEESTD.2004.95390]
command interface.

Optional Commands

Despite the required commands, there are several optional command groups
defined. The standard requires that if one command is used, it’s complete
group must be implemented. These are

	Power on common commands

	
	*PSC - Set the power-on status clear bit [14] .

	*PSC? - Query the power-on status clear bit [15] .

	Parallel poll common commands

	
	*IST? - Query the individual status message bit [16] .

	*PRE - Set the parallel poll enable register [17] .

	*PRE? - Query the parallel poll enable register [18] .

	Resource description common commands

	
	*RDT - Store the resource description in the device [19] .

	*RDT? - Query the stored resource description [20] .

	Protected user data commands

	
	*PUD - Store protected user data in the device [21] .

	*PUD? - Query the protected user data [22] .

	Calibration command

	
	*CAL? - Perform internal self calibration [23] .

	Trigger command

	
	*TRG - Execute trigger command [24] .

	Trigger macro commands

	
	*DDT - Define device trigger [25] .

	*DDT? - Define device trigger query [26] .

	Macro Commands

	
	*DMC - Define device trigger [27] .

	*EMC - Define device trigger query [28] .

	*EMC? - Define device trigger [29] .

	*GMC? - Define device trigger query [30] .

	*LMC? - Define device trigger [31] .

	*PMC - Define device trigger query [32] .

	Option Identification command

	
	*OPT? - Option identification query [33] .

	Stored settings commands

	
	*RCL - Restore device settings from local memory [34] .

	*SAV - Store current settings of the device in local memory [35] .

	Learn command

	
	*LRN? - Learn device setup query [36] .

	System configuration commands

	
	*AAD - Accept address command [37] .

	*DLF - Disable listener function command [38] .

	Passing control command

	
	*PCB - Pass control back [39] .

The optional command groups are implemented as Mix-in classes. A device
supporting required IEC 60488-2 [http://dx.doi.org/10.1109/IEEESTD.2004.95390] commands as well as the optional Power-on
commands is implemented as follows:

from slave.core import Command
from slave.iec60488 import IEC60488, PowerOn

class CustomDevice(IEC60488, PowerOn):
 pass

	[1]	IEC 60488-2:2004(E) section 10.3

	[2]	IEC 60488-2:2004(E) section 10.10

	[3]	IEC 60488-2:2004(E) section 10.11

	[4]	IEC 60488-2:2004(E) section 10.12

	[5]	IEC 60488-2:2004(E) section 10.34

	[6]	IEC 60488-2:2004(E) section 10.35

	[7]	IEC 60488-2:2004(E) section 10.36

	[8]	IEC 60488-2:2004(E) section 10.14

	[9]	IEC 60488-2:2004(E) section 10.32

	[10]	IEC 60488-2:2004(E) section 10.38

	[11]	IEC 60488-2:2004(E) section 10.18

	[12]	IEC 60488-2:2004(E) section 10.19

	[13]	IEC 60488-2:2004(E) section 10.39

	[14]	IEC 60488-2:2004(E) section 10.25

	[15]	IEC 60488-2:2004(E) section 10.26

	[16]	IEC 60488-2:2004(E) section 10.15

	[17]	IEC 60488-2:2004(E) section 10.23

	[18]	IEC 60488-2:2004(E) section 10.24

	[19]	IEC 60488-2:2004(E) section 10.30

	[20]	IEC 60488-2:2004(E) section 10.31

	[21]	IEC 60488-2:2004(E) section 10.27

	[22]	IEC 60488-2:2004(E) section 10.28

	[23]	IEC 60488-2:2004(E) section 10.2

	[24]	IEC 60488-2:2004(E) section 10.37

	[25]	IEC 60488-2:2004(E) section 10.4

	[26]	IEC 60488-2:2004(E) section 10.5

	[27]	IEC 60488-2:2004(E) section 10.7

	[28]	IEC 60488-2:2004(E) section 10.8

	[29]	IEC 60488-2:2004(E) section 10.9

	[30]	IEC 60488-2:2004(E) section 10.13

	[31]	IEC 60488-2:2004(E) section 10.16

	[32]	IEC 60488-2:2004(E) section 10.22

	[33]	IEC 60488-2:2004(E) section 10.20

	[34]	IEC 60488-2:2004(E) section 10.29

	[35]	IEC 60488-2:2004(E) section 10.33

	[36]	IEC 60488-2:2004(E) section 10.17

	[37]	IEC 60488-2:2004(E) section 10.1

	[38]	IEC 60488-2:2004(E) section 10.6

	[39]	IEC 60488-2:2004(E) section 10.21

 Copyright 2012, Marco Halder.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Slave

Asynchronous IO

Warning

This is currently not working!

Slave has a built-in compatibility layer for the tornado framework. It is
currently in an early state and only socket transports are supported.
Nevertheless, it is already usable. The following examples will show how to
make use of it.

A simple asynchronous poller

In this example we will implement a simple, basically useless, asynchronous
poller to explain the concept. It simply prints out the polled value. We will
extend this example to implement a monitor with a web interface.

from tornado.ioloop import IOLoop, PeriodicCallback
from tornado.gen import coroutine

import slave.async
Monkey patch slave to use the asynchronous implementation
slave.async.patch()

Due to the call to `patch()`, the driver and the transport automatically
use the asynchronous implementation.
from slave.sr7230 import SR7230
from slave.transport import TCPIPDevice

lockin1 = SR7230(TCPIPDevice('192.168.178.11:80000'))

def show(fn):
 @coroutine
 def print_fn():
 value = yield fn()
 print value
 return print_fn

ioloop = tornado.ioloop.IOLoop.Instance()
poller = [
 # poll the x voltage every 2 seconds, the sensitivity every 5.
 PeriodicCallback(show(lambda: lockin1.x), 2000),
 PeriodicCallback(show(lambda: lockin1.sensitivity), 5000)
]
for p in poller:
 ioloop.add_callback(p.start)

ioloop.start()

 Copyright 2012, Marco Halder.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Slave

Usage Examples

Simple Measurement

This examples shows a simple measurement script, using a Stanford Research
Systems LockIn amplifier and is discussed in more detail in the
Quickstart section.

#!/usr/bin/env python
import time

from slave.srs import SR830
from slave.transport import Visa

lockin = SR830(Visa('GPIB::08'))
lockin.frequency = 22.08
lockin.amplitude = 5.0
lockin.reserve = 'high'
for i in xrange(60):
 print lockin.x
 time.sleep(1)

Magnetotransport Measurement

In this example, we assume a sample with standard four terminal wiring is placed
inside a Quantum Desing PPMS. We’re using our own Lock-In amlifier to measure
the resistance as a function of temperature.

"""This example shows a measurement routine for a custom magnetotransport setup
in the [P]hysical [P]roperties [M]easurement [S]ystem PPMS Model 6000.

"""
import datetime

import visa

from slave.quantum_design import PPMS
from slave.sr830 import SR830
from slave.transport import Visa # pyvisa wrapper
from slave.misc import Measurement

Connect to the lockin amplifier and the ppms
lockin = SR830(Visa('GPIB::10'))
ppms = PPMS(Visa('GPIB::15'))

try:
 # Configure the lockin amplifier
 lockin.frequency = 22.08 # Use a detection frequency of 22.08 Hz
 lockin.amplitude = 5.0 # and an amplitude of 5 V.
 lockin.reserve = 'low'
 lockin.time_constant = 3

 # Set the ppms temperature to 10 K, cooling with a rate of 20 K per min.
 ppms.set_temperature(10, 20, wait_for_stability=True)
 # Now sweep slowly to avoid temperature instabilities.
 ppms.set_temperature(1.2, 0.5, wait_for_stability=True)
 # Set a magnetic field of 1 T at a rate of 150 mT per second and set the magnet
 # in persistent mode.
 #
 # Note: The PPMS uses Oersted instead of Tesla. 1 Oe = 0.1 mT.
 ppms.set_field(10000, 150, mode='persistent', wait_for_stability=True)

 # Set the appropriate gain. (We're assuming the measured voltage decreases
 # with increasing temperature.
 lockin.auto_gain()

 # Define the measurement parameters
 parameters = [
 lambda: datetime.datetime.now(), # Get timestamp
 lambda: lockin.x,
 lambda: lockin.y,
 lambda: ppms.temperature,
]
 # Finally start the measurement, using the Measurement helper class as a
 # context manager (This automatically closes the measurement file).
 with Measurement('1.2K-300K_1T.dat', measure=parameters) as measurement:
 ppms.scan_temperature(measurement, 300, 0.5)
except Exception, e:
 # Catch possible errors and print a message.
 print 'An error occured:', e
finally:
 # Finally put the ppms in standby mode.
 ppms.shutdown()

 Copyright 2012, Marco Halder.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Slave

API

This part covers the complete api documentation of the slave library.

slave Package

transport Module

Several implementations of the transport api.

The slave.transport module implements the lowest level abstraction layer
in the slave library. The transport is responsible for sending and receiving
raw bytes. It interfaces with the hardware, but has no knowledge of the meaning
of the bytes transfered.

The Transport class defines a common api used in higher abstraction
layers. Subclasses of slave.Transport must implement __read__() and
__write__() methods.

The following transports are already available:

	Serial - A wrapper of the pyserial library

	Socket - A wrapper around the standard socket library.

	LinuxGpib - A wrapper of the linux-gpib library

	visa() - A wrapper of the pyvisa library. (Supports pyvisa 1.4 - 1.5).

	
class slave.transport.LinuxGpib(primary=0, secondary=0, board=0, timeout=13, send_eoi=1, eos=0)

	Bases: slave.transport.Transport

A linuxgpib adapter.

	
close()

	Closes the gpib transport.

	
trigger()

	Triggers the device.

The trigger method sens a GET(group execute trigger) command byte to
the device.

	
class slave.transport.Serial(*args, **kw)

	Bases: slave.transport.Transport

A pyserial adapter.

	
class slave.transport.SimulatedTransport

	Bases: future.types.newobject.newobject

The SimulatedTransport.

The SimulatedTransport does not have any functionallity. It servers as a
sentinel value for the Command class to enable the simulation mode.

	
class slave.transport.Socket(address, alwaysopen=True, *args, **kw)

	Bases: slave.transport.Transport

A slave compatible adapter for pythons socket.socket class.

	Parameters:	
	address – The socket address a tuple of host string and port. E.g.

from slave.signal_recovery import SR7230
from slave.transport import Socket

lockin = SR7230(Socket(address=('192.168.178.1', 50000)))

	alwaysopen – A boolean flag deciding wether the socket should be
opened and closed for each use as a contextmanager or should be opened
just once and kept open until closed explicitely. E.g.:

from slave.transport import Socket

transport = Socket(address=('192.168.178.1', 50000), alwaysopen=False)
with transport:
 # connection is created
 transport.write(b'*IDN?')
 response = transport.read_until(b'\n')
 # connection is closed again.

transport = Socket(address=('192.168.178.1', 50000), alwaysopen=True)
connection is already opened.
with transport:
 transport.write(b'*IDN?')
 response = transport.read_until(b'\n')
 # connection is kept open.

	
close()

	

	
open()

	

	
class slave.transport.Transport(max_bytes=1024, lock=None)

	Bases: future.types.newobject.newobject

A utility class to write and read data.

The Transport base class defines a common interface used by the
slave library. Transports are intended to be used as context managers.

Subclasses must implement __read__ and __write__.

	
read_bytes(num_bytes)

	Reads at most num_bytes.

	
read_exactly(num_bytes)

	Reads exactly num_bytes

	
read_until(delimiter)

	Reads until the delimiter is found.

	
write(data)

	

	
class slave.transport.Visa_1_4(instrument)

	Bases: slave.transport.Transport

A pyvisa 1.4 adapter.

	
class slave.transport.Visa_1_5(instrument)

	Bases: slave.transport.Transport

A pyvisa 1.5 adapter.

	
slave.transport.visa(*args, **kw)

	A pyvisa adapter factory function.

protocol Module

	
class slave.protocol.IEC60488(msg_prefix=u'', msg_header_sep=u' ', msg_data_sep=u', ', msg_term=u'n', resp_prefix=u'', resp_header_sep=u'', resp_data_sep=u', ', resp_term=u'n', encoding=u'ascii')

	Bases: slave.protocol.Protocol

Implementation of IEC60488 protocol.

This class implements the IEC-60488 protocol, formerly known as IEEE 488.2.

	Parameters:	
	msg_prefix – A string which will be prepended to the generated command
string.

	msg_header_sep – A string separating the message header from the
message data.

	msg_data_sep – A string separating consecutive data blocks.

	msg_term – A string terminating the message.

	resp_prefix – A string each response is expected to begin with.

	resp_header_sep – The expected separator of the response header and
the response data.

	resp_data_sep – The expected data separator of the response message.

	resp_term – The response message terminator.

	stb_callback – For each read and write operation, a status byte is
received. If a callback function is given, it will be called with the
status byte.

	
create_message(header, *data)

	

	
parse_response(response, header=None)

	Parses the response message.

The following graph shows the structure of response messages.

 +----------+
 +--+ data sep +<-+
 | +----------+ |
 | |
 +--------+ +------------+ | +------+ |
 +-->| header +------->+ header sep +---+--->+ data +----+----+
 | +--------+ +------------+ +------+ |
 | |
--+ +----------+ +-->
 | +--+ data sep +<-+ |
	+----------+	
	+------+	
 +--------------------------------------+--->+ data +----+----+
 +------+

	
query(transport, header, *data)

	

	
write(transport, header, *data)

	

	
class slave.protocol.OxfordIsobus(address=None, echo=True, msg_term=u'r', resp_term=u'r', encoding=u'ascii')

	Bases: slave.protocol.Protocol

Implements the oxford isobus protocol.

	Parameters:	
	address – The isobus address.

	echo – Enables/Disables device command echoing.

	msg_term – The message terminator.

	resp_term – The response terminator.

	encoding – The message and response encoding.

Oxford Isobus messages messages are created in the following manner, where
HEADER is a single char:

+--------+ +------+
+ HEADER +--->+ DATA +
+--------+ +------+

Isobus allows to connect multiple devices on a serial line. To address a
specific device a control character ‘@’ followed by an integer address is
used:

+---+ +---------+ +--------+ +------+
+ @ +--->+ ADDRESS +--->+ HEADER +--->+ DATA +
+---+ +---------+ +--------+ +------+

On success, the device answeres with the header followed by data if
requested. If no echo response is desired, the ‘$’ control char must be
prepended to the command message. This is useful if a single command must
sent to all connected devices at once.

On error, the device answeres with a ‘?’ char followed by the command
message. E.g the error response to a message @7R10 would be ?R10.

	
create_message(header, *data)

	

	
parse_response(response, header)

	

	
query(transport, header, *data)

	

	
write(transport, header, *data)

	

	
class slave.protocol.Protocol

	Bases: future.types.newobject.newobject

Abstract protocol base class.

	
query(transport, *args, **kw)

	

	
write(transport, *args, **kw)

	

	
class slave.protocol.SignalRecovery(msg_prefix=u'', msg_header_sep=u' ', msg_data_sep=u' ', msg_term=u'x00', resp_prefix=u'', resp_header_sep=u'', resp_data_sep=u', ', resp_term=u'x00', stb_callback=None, olb_callback=None, encoding=u'ascii')

	Bases: slave.protocol.IEC60488

An implementation of the signal recovery network protocol.

Modern signal recovery devices are fitted with a ethernet port. This class
implements the protocol used by these devices. Command
messages are built with the following algorithm.

 +----------+
 +--+ data sep +<-+
 | +----------+ |
 | |
 +--------+ +------------+ | +------+ | +----------+
--->+ header +--->+ header sep +---+--->+ data +----+--->+ msg term +-->
 +--------+ +------------+ +------+ +----------+

Each command, query or write, generates a response. It is terminated with a
null character ‘0’ followed by the status byte and the overload byte.

	Parameters:	
	msg_prefix – A string which will be prepended to the generated command
string.

	msg_header_sep – A string separating the message header from the
message data.

	msg_data_sep – A string separating consecutive data blocks.

	msg_term – A string terminating the message.

	resp_prefix – A string each response is expected to begin with.

	resp_header_sep – The expected separator of the response header and
the response data.

	resp_data_sep – The expected data separator of the response message.

	resp_term – The response message terminator.

	stb_callback – For each read and write operation, a status byte is
received. If a callback function is given, it will be called with the
status byte.

	olb_callback – For each read and write operation, a overload status
byte is received. If a callback function is given, it will be called
with the overload byte.

	encoding – The encoding used to convert the message string to bytes
and vice versa.

E.g.:

>>>from slave.protocol import SignalRecovery
>>>from slave.transport import Socket

>>>transport = Socket(('192.168.178.1', 5900))
>>>protocol = SignalRecovery()
>>>print protocol.query(transport, '*IDN?')

	
call_byte_handler(status_byte, overload_byte)

	

	
query(transport, header, *data)

	

	
query_bytes(transport, num_bytes, header, *data)

	Queries for binary data

	Parameters:	
	transport – A transport object.

	num_bytes – The exact number of data bytes expected.

	header – The message header.

	data – Optional data.

	Returns:	The raw unparsed data bytearray.

	
write(transport, header, *data)

	

core Module

The core module contains several helper classes to ease instrument control.

Implementing an instrument interface is pretty straight forward. A simple
implementation might look like:

from slave.core import InstrumentBase, Command
from slave.types import Integer

class MyInstrument(InstrumentBase):
 def __init__(self, transport):
 super(MyInstrument, self).__init__(transport)
 # A simple query and writeable command, which takes and writes an
 # Integer.
 self.my_cmd = Command('QRY?', 'WRT', Integer)
 # A query and writeable command that converts a string parameter to
 # int and vice versa.
 self.my_cmd2 = Command('QRY2?', 'WRT2', Enum('first', 'second'))

	
class slave.core.Command(query=None, write=None, type_=None, protocol=None)

	Bases: object

Represents an instrument command.

The Command class handles the communication with the instrument. It
converts the user input into the appropriate command string and sends it to
the instrument via the transport object.
For example:

a read and writeable command
cmd1 = Command('STRING?', 'STRING', String)

a readonly command returning a tuple of two strings
cmd2 = Command(('STRING?', [String, String]))

a writeonly command
cmd3 = Command(write=('STRING', String))

	Parameters:	
	query – A string representing the query program header, e.g.
‘*IDN?’. To allow customisation of the queriing a 2-tuple or 3-tuple
value with the following meaning is also possible.

	(<query header>, <response data type>)

	(<query header>, <response data type>, <query data type>)

The types have the same requirements as the type parameter. If they are

	write – A string representing the command program header, e.g.
‘*CLS’. To allow for customization of the writing a 2-tuple value
with the following requirements is valid as well.

	(<command header>, <response data type>)

The types have the same requirements as the type parameter.

	protocol – When a protocol (an object implementing the
slave.protocol.Protocol interface) is given,
query() and write() methods ignore it’s
protocol argument and use it instead.

	
query(transport, protocol, *data)

	Generates and sends a query message unit.

	Parameters:	
	transport – An object implementing the .Transport interface.
It is used by the protocol to send the message and receive the
response.

	protocol – An object implementing the .Protocol interface.

	data – The program data.

	Raises AttributeError:

		if the command is not queryable.

	
simulate_query(data)

	

	
simulate_write(data)

	

	
write(transport, protocol, *data)

	Generates and sends a command message unit.

	Parameters:	
	transport – An object implementing the .Transport interface.
It is used by the protocol to send the message.

	protocol – An object implementing the .Protocol interface.

	data – The program data.

	Raises AttributeError:

		if the command is not writable.

	
class slave.core.CommandSequence(transport, protocol, iterable)

	Bases: slave.misc.ForwardSequence

A sequence forwarding item access to the query and write methods.

	
class slave.core.InstrumentBase(transport, protocol=None, *args, **kw)

	Bases: object

Base class of all instruments.

The InstrumentBase class applies some magic to simplify the Command
interaction. Read access on Command attributes is redirected to
the Command.query, write access to the Command.write
member function.

	Parameters:	
	transport – The transport object.

	protocol – The protocol object. If no protocol is given, a
IEC60488 protocol is used as default.

cryomagnetics Module

	
class slave.cryomagnetics.mps4g.MPS4G(transport, shims=None, channel=None)

	Bases: slave.iec60488.IEC60488

Represents the Cryomagnetics, inc. 4G Magnet Power Supply.

	Parameters:	
	transport – A transport object.

	channel – This parameter is used to set the MPS4G in single channel
mode. Valid entries are None, 1 and 2.

	Variables:	
	channel – The selected channel.

	error – The error response mode of the usb interface.

	current – The magnet current.Queriing returns a value, unit tuple.
While setting the current, the unit is omited. The value must be
supplied in the configured units (ampere, kilo gauss).

	output_current – The power supply output current.

	lower_limit – The lower current limit. Queriing returns a value, unit
tuple. While setting the lower current limit, the unit is omited. The
value must be supplied in the configured units (ampere, kilo gauss).

	mode – The selected operation mode, either ‘Shim’ or ‘Manual’.

	name – The name of the currently selected coil. The length of the name
is in the range of 0 to 16 characters.

	switch_heater – The state of the persistent switch heater. If True
the heater is switched on and off otherwise.

	upper_limit – The upper current limit. Queriing returns a value, unit
tuple. While setting the upper current limit, the unit is omited. The
value must be supplied in the configured units (ampere, kilo gauss).

	unit – The unit used for all input and display operations. Must be
either ‘A’ or ‘G’ meaning Ampere or Gauss.

	voltage_limit – The output voltage limit. Must be in the range of 0.00
to 10.00.

	magnet_voltage – The magnet voltage in the range -10.00 to 10.00.

	magnet_voltage – The output voltage in the range -12.80 to 12.80.

	standard_event_status – The standard event status register.

	standard_event_status_enable – The standard event status enable
register.

	id – The identification, represented by the following tuple
(<manufacturer>, <model>, <serial>, <firmware>, <build>)

	operation_completed – The operation complete bit.

	status – The status register.

	service_request_enable – The service request enable register.

	sweep_status – A string representing the current sweep status.

Warning

Due to a bug in firmware version 1.25, a semicolon must be appended to.
the end of the commands ‘LLIM’ and ‘ULIM’. This is done
automatically. Writing the name crashes the MPS4G software. A restart
does not fix the problem. You need to load the factory defaults.

Note

If something bad happens and the MPS4G isn’t reacting, you can load the
factory defaults via the simulation mode. To enter it press SHIFT and
5 on the front panel at startup.

	
disable_shims()

	Disables all shims.

	
enable_shims()

	Enables all shims.

	
local()

	Sets the front panel in local mode.

	
locked()

	Sets the front panel in locked remote mode.

	
quench_reset()

	Resets the quench condition.

	
remote()

	Sets the front panel in remote mode.

	
sweep(mode, speed=None)

	Starts the output current sweep.

	Parameters:	
	mode – The sweep mode. Valid entries are ‘UP’, ‘DOWN’,
‘PAUSE’`or `’ZERO’. If in shim mode, ‘LIMIT’ is valid as well.

	speed – The sweeping speed. Valid entries are ‘FAST’, ‘SLOW’
or None.

	
class slave.cryomagnetics.mps4g.Range(transport, protocol, idx)

	Bases: slave.core.InstrumentBase

Represents a MPS4G current range.

	Parameters:	
	transport – A transport object.

	protocol – A protocol object.

	idx – The current range index. Valid values are 0, 1, 2, 3, 4.

	Variables:	
	limit – The upper limit of the current range.

	rate – The sweep rate of this current range.

	
slave.cryomagnetics.mps4g.SHIMS = [u'Z', u'Z2', u'Z3', u'Z4', u'X', u'Y', u'ZX', u'ZY', u'C2', u'S2', u'Z2X', u'Z2Y']

	A list with all valid shim identifiers.

	
class slave.cryomagnetics.mps4g.Shim(transport, protocol, shim)

	Bases: slave.core.InstrumentBase

Represents a Shim option of the 4GMPS.

	Parameters:	
	transport – A transport object.

	protocol – A protocol object.

	shim – The identifier of the shim.

	Variables:	
	limit – The current limit of the shim.

	status – Represents the shim status, True if it’s enabled, False
otherwise.

	current – The magnet current of the shim. Queriing returns a value,
unit tuple. While setting the current, the unit is omited. The value
must be supplied in the configured units (ampere, kilo gauss).

	
disable()

	Disables the shim.

	
select()

	Selects the shim as the current active shim.

	
class slave.cryomagnetics.mps4g.UnitFloat(min=None, max=None, *args, **kw)

	Bases: slave.types.Float

Represents a floating point type. If a unit is present in the string
representation, it will get stripped.

iec60488 Module

The iec60488 module implements a IEC 60488-2:2004(E) compliant interface.

The minimal required interface is implemented by the IEC60488 class. Optional
command groups a provided by mixin classes. They should not be used on their
own.

Usage:

from slave.IEC60488 import IEC60488, PowerOn

class CustomInstrument(IEC60488, PowerOn):
 '''A custom instrument compliant with the IEC 60488-2:2004(E),
 supporting the optional PowerOn commands.
 '''
 def __init__(self, transport):
 super(CustomInstrument, self).__init__(transport)
 # Implement custom commands.

	
class slave.iec60488.Calibration(*args, **kw)

	Bases: object

A mixin class, implementing the optional calibration command.

	Variables:	protected_user_data – The protected user data. This is information
unique to the device, such as calibration date, usage time,
environmental conditions and inventory control numbers.

Note

This is a mixin class designed to work with the IEC60488 class.

The IEC 60488-2:2004(E) defines the following optional calibration command:

	*CAL? - See IEC 60488-2:2004(E) section 10.2

	
calibrate()

	Performs a internal self-calibration.

	Returns:	An integer in the range -32767 to + 32767 representing the
result. A value of zero indicates that the calibration completed
without errors.

	
class slave.iec60488.IEC60488(transport, protocol=None, esb=None, stb=None, *args, **kw)

	Bases: slave.core.InstrumentBase

The IEC60488 class implements a IEC 60488-2:2004(E) compliant base
class.

	Parameters:	
	transport – A transport object.

	esb – A dictionary mapping the 8 bit standard event status register.
Integers in the range 0 to 7 are valid keys. If present they replace
the default values.

	stb – A dictionary mapping the 8 bit status byte. Integers in the
range 0 to 7 are valid keys. If present they replace the default
values.

	Variables:	
	event_status – A dictionary representing the 8 bit event status
register.

	event_status_enable – A dictionary representing the 8 bit event status
enable register.

	status – A dictonary representing the 8 bit status byte.

	status_enable – A dictionary representing the status enable register.

	operation_complete – The operation complete flag.

	identification – The device identification represented by the
following tuple
(<manufacturer>, <model>, <serial number>, <firmware level>).

A IEC 60488-2:2004(E) compliant interface must implement the following
status reporting commands:

	*CLS - See IEC 60488-2:2004(E) section 10.3

	*ESE - See IEC 60488-2:2004(E) section 10.10

	*ESE? - See IEC 60488-2:2004(E) section 10.11

	*ESR - See IEC 60488-2:2004(E) section 10.12

	*SRE - See IEC 60488-2:2004(E) section 10.34

	*SRE? - See IEC 60488-2:2004(E) section 10.35

	*STB? - See IEC 60488-2:2004(E) section 10.36

In addition, the following internal operation common commands are required:

	*IDN? - See IEC 60488-2:2004(E) section 10.14

	*RST - See IEC 60488-2:2004(E) section 10.32

	*TST? - See IEC 60488-2:2004(E) section 10.38

Furthermore the following synchronisation commands are required:

	*OPC - See IEC 60488-2:2004(E) section 10.18

	*OPC? - See IEC 60488-2:2004(E) section 10.19

	*WAI - See IEC 60488-2:2004(E) section 10.39

	
clear()

	Clears the status data structure.

	
complete_operation()

	Sets the operation complete bit high of the event status byte.

	
reset()

	Performs a device reset.

	
test()

	Performs a internal self-test and returns an integer in the range
-32767 to + 32767.

	
wait_to_continue()

	Prevents the device from executing any further commands or queries
until the no operation flag is True.

Note

In devices implementing only sequential commands, the no-operation
flag is always True.

	
class slave.iec60488.Learn(*args, **kw)

	Bases: object

A mixin class, implementing the optional learn command.

The IEC 60488-2:2004(E) defines the following optional learn command:

	*LRN? - See IEC 60488-2:2004(E) section 10.17

	
learn()

	Executes the learn command.

	Returns:	A string containing a sequence of response message units.
These can be used as program message units to recover the state
of the device at the time this command was executed.

	
class slave.iec60488.Macro(*args, **kw)

	Bases: object

A mixin class, implementing the optional macro commands.

	Variables:	macro_commands_enabled – Enables or disables the expansion of macros.

The IEC 60488-2:2004(E) defines the following optional macro commands:

	*DMC - See IEC 60488-2:2004(E) section 10.7

	*EMC - See IEC 60488-2:2004(E) section 10.8

	*EMC? - See IEC 60488-2:2004(E) section 10.9

	*GMC? - See IEC 60488-2:2004(E) section 10.13

	*LMC? - See IEC 60488-2:2004(E) section 10.16

	*PMC - See IEC 60488-2:2004(E) section 10.22

	
define_macro(macro)

	Executes the define macro command.

	Parameters:	macro – A macro string, e.g.
‘“SETUP1”,#221VOLT 14.5;CURLIM 2E-3’

Note

The macro string is not validated.

	
disable_macro_commands()

	Disables all macro commands.

	
enable_macro_commands()

	Enables all macro commands.

	
get_macro(label)

	Returns the macro.

	Parameters:	label – The label of the requested macro.

	
macro_labels()

	Returns the currently defined macro labels.

	
purge_macros()

	Deletes all previously defined macros.

	
class slave.iec60488.ObjectIdentification(*args, **kw)

	Bases: object

A mixin class, implementing the optional object identification command.

	Variables:	object_identification – Identifies reportable device options.

The IEC 60488-2:2004(E) defines the following optional object
identification command:

	*OPT? - See IEC 60488-2:2004(E) section 10.20

	
class slave.iec60488.ParallelPoll(ppr=None, *args, **kw)

	Bases: object

A mixin class, implementing the optional parallel poll common commands.

	Parameters:	ppr – A dictionary mapping the 8-16 bit wide parallel poll register.
Integers in the range 8 to 15 are valid keys. If present they replace
the default values.

	Variables:	
	individual_status – Represents the state of the IEEE 488.1 “ist” local
message in the device.

	parallel_poll_enable – A dictionary representing the 16 bit parallel
poll enable register.

Note

This is a mixin class designed to work with the IEC60488 class.

The IEC 60488-2:2004(E) defines the following optional parallel poll common
commands:

	*IST? - See IEC 60488-2:2004(E) section 10.15

	*PRE - See IEC 60488-2:2004(E) section 10.23

	*PRE? - See IEC 60488-2:2004(E) section 10.24

These are mandatory for devices implementing the PP1 subset.

	
class slave.iec60488.PassingControl(*args, **kw)

	Bases: object

A mixin class, implementing the optional passing control command.

The IEC 60488-2:2004(E) defines the following optional passing control
command:

	*PCB - See IEC 60488-2:2004(E) section 10.21

	
pass_control_back(primary, secondary)

	The address to which the controll is to be passed back.

Tells a potential controller device the address to which the control is
to be passed back.

	Parameters:	
	primary – An integer in the range 0 to 30 representing the
primary address of the controller sending the command.

	secondary – An integer in the range of 0 to 30 representing the
secondary address of the controller sending the command. If it is
missing, it indicates that the controller sending this command does
not have extended addressing.

	
class slave.iec60488.PowerOn(*args, **kw)

	Bases: object

A mixin class, implementing the optional power-on common commands.

	Variables:	poweron_status_clear – Represents the power-on status clear flag. If
it is False the event status enable, service request enable and
serial poll enable registers will retain their status when power is
restored to the device and will be cleared if it is set to True.

Note

This is a mixin class designed to work with the IEC60488 class

The IEC 60488-2:2004(E) defines the following optional power-on common
commands:

	*PSC - See IEC 60488-2:2004(E) section 10.25

	*PSC? - See IEC 60488-2:2004(E) section 10.26

	
class slave.iec60488.ProtectedUserData(*args, **kw)

	Bases: object

A mixin class, implementing the protected user data commands.

	Variables:	protected_user_data – The protected user data. This is information
unique to the device, such as calibration date, usage time,
environmental conditions and inventory control numbers.

Note

This is a mixin class designed to work with the IEC60488 class.

The IEC 60488-2:2004(E) defines the following optional protected user data
commands:

	*RDT - See IEC 60488-2:2004(E) section 10.27

	*RDT? - See IEC 60488-2:2004(E) section 10.28

	
class slave.iec60488.ResourceDescription(*args, **kw)

	Bases: object

A mixin class, implementing the optional resource description common
commands.

	Variables:	resource_description – Represents the content of the resource
description memory.

Note

Writing does not perform any validation.

Note

This is a mixin class designed to work with the IEC60488 class.

The IEC 60488-2:2004(E) defines the following optional resource description
common commands:

	*RDT - See IEC 60488-2:2004(E) section 10.30

	*RDT? - See IEC 60488-2:2004(E) section 10.31

	
class slave.iec60488.StoredSetting(*args, **kw)

	Bases: object

A mixin class, implementing the optional stored setting commands.

The IEC 60488-2:2004(E) defines the following optional stored setting
commands:

	*RCL - See IEC 60488-2:2004(E) section 10.29

	*SAV - See IEC 60488-2:2004(E) section 10.33

	
recall(idx)

	Restores the current settings from a copy stored in local memory.

	Parameters:	idx – Specifies the memory slot.

	
save(idx)

	Stores the current settings of a device in local memory.

	Parameters:	idx – Specifies the memory slot.

	
class slave.iec60488.SystemConfiguration(*args, **kw)

	Bases: object

A mixin class, implementing the optional system configuration commands.

The IEC 60488-2:2004(E) defines the following optional system configuration
commands:

	*AAD - See IEC 60488-2:2004(E) section 10.1

	*DLF - See IEC 60488-2:2004(E) section 10.6

	
accept_address()

	Executes the accept address command.

	
disable_listener()

	Executes the disable listener command.

	
class slave.iec60488.Trigger(*args, **kw)

	Bases: object

A mixin class, implementing the optional trigger command.

	Variables:	protected_user_data – The protected user data. This is information
unique to the device, such as calibration date, usage time,
environmental conditions and inventory control numbers.

Note

This is a mixin class designed to work with the IEC60488 class.

The IEC 60488-2:2004(E) defines the following optional trigger command:

	*TRG - See IEC 60488-2:2004(E) section 10.37

It is mandatory for devices implementing the DT1 subset.

	
trigger()

	Creates a trigger event.

Note

It first tries to execute transport._trigger(). If this fails,
the *TRG is sent.

	
class slave.iec60488.TriggerMacro(*args, **kw)

	Bases: object

A mixin class, implementing the optional trigger macro commands.

	Variables:	trigger_macro – The trigger macro, e.g. ‘#217TRIG WFM;MEASWFM?’.

Note

This is a mixin class designed to work with the IEC60488 class
and the Trigger mixin.

The IEC 60488-2:2004(E) defines the following optional trigger macro
commands:

	*DDT - See IEC 60488-2:2004(E) section 10.4

	*DDT? - See IEC 60488-2:2004(E) section 10.5

lakeshore Module

The ls340 module implements an interface for the Lakeshore model LS340
temperature controller.

The LS340 class models the excellent Lakeshore model LS340 [http://www.lakeshore.com/products/cryogenic-temperature-controllers/model-340/Pages/Overview.aspx]
temperature controller. Using it is simple:

We use pyvisa to connect to the controller.
import visa
from slave.lakeshore import LS340

We assume the LS340 is listening on GPIB channel.
ls340 = LS340(visa.instrument('GPIB::08'))
Show kelvin reading of channel A.
print ls340.input['A'].kelvin

Filter channel 'B' data through 10 readings with 2% of full scale window.
ls340.input['B'].filter = True, 10, 2

Since the LS340 supports different scanner options, these are
supported as well. They extend the available input channels. To use them one
simply passes the model name at construction, e.g.:

import visa
from slave.lakeshore import LS340

We assume the LS340 is equipped with the 3468 eight channel input option
card.
ls340 = LS340(visa.instrument('GPIB::08'), scanner='3468')

Show sensor reading of channel D2.
print ls340.input['D2'].sensor_units

	
class slave.lakeshore.ls340.Column(transport, protocol, idx)

	Bases: slave.core.InstrumentBase

Represents a column of records.

	Parameters:	
	transport – A transport object.

	protocol – A protocol object.

	idx – The column index.

The LS340 stores data in table form. Each row is a record consisting of
points. Each column has an associated type. The type can be read or written
with type(). The records can be accessed via the indexing syntax,
e.g.

Assuming an LS340 instance named ls340, the following should print
point1 of record 7.
print ls340.column1[7]

Note

Currently there is no parsing done on the type and the record. These
should be written or read as strings according to the manual.
Also slicing is not supported yet.

	
type

	

	
class slave.lakeshore.ls340.Curve(transport, protocol, idx, writeable, length=None)

	Bases: slave.core.InstrumentBase

Represents a LS340 curve.

	Parameters:	
	transport – A transport object.

	protocol – A protocol object.

	idx – The curve index.

	writeable – Specifies if the represented curve is read-only or
writeable as well. User curves are writeable in general.

	length – The maximum number of points. Default: 200.

	Variables:	header – The curve header configuration.
(<name><serial><format><limit><coefficient>), where

	<name> The name of the curve, a string limited to 15 characters.

	<serial> The serial number, a string limited to 10 characters.

	<format> Specifies the curve data format. Valid entries are
‘mV/K’, ‘V/K’, ‘Ohm/K’, ‘logOhm/K’, ‘logOhm/logK’.

	<limit> The curve temperature limit in Kelvin.

	<coefficient> The curves temperature coefficient. Valid entries are
‘negative’ and ‘positive’.

The Curve is implementing the collections.sequence protocoll. It models a
sequence of points. These are tuples with the following structure
(<units value>, <temp value>), where

	<units value> specifies the sensor units for this point.

	<temp value> specifies the corresponding temperature in kelvin.

To access the points of this curve, use slicing operations, e.g.:

assuming an LS340 instance named ls340, the following will print the
sixth point of the first user curve.
curve = ls340.user_curve[0]
print curve[5]

You can use negative indices. This will print the last point.
print curve[-1]

You can use the builtin function len() to get the length of the curve
buffer. This is **not** the length of the stored points, but the
maximum number of points that can be stored in this curve.
print len(curve)

#Extended slicing is available too. This will print every second point.
print curve[::2]

Set this curves data point to 0.10191 sensor units and 470.000 K.
curve[5] = 0.10191, 470.000

You can use slicing as well
points = [
 (0.1, 470.),
 (0.2, 480.),
 (0.4, 490.),
]
curve[2:6:2] = points
To copy a complete sequence of points in one go, do
curve[:] = sequence_of_points
This will copy all points in the sequence, but points exceeding the
buffer length are stripped.

Warning

In contrast to the LS340 device, point indices start at 0 not 1.

	
delete()

	Deletes the current curve.

	Raises RuntimeError:

		Raises when` when one tries to delete a read-only
curve.

	
class slave.lakeshore.ls340.Heater(transport, protocol)

	Bases: slave.core.InstrumentBase

Represents the LS340 heater.

	Parameters:	
	transport – A transport object.

	protocol – A protocol object.

	Variables:	
	output – The heater output in percent.

	range – The heater range. An integer between 0 and 5, where 0
deactivates the heater.

	status – The heater error status.

	
ERROR_STATUS = [u'no error', u'power supply over voltage', u'power supply under voltat', u'output digital-to-analog converter error', u'current limit digital-to-analog converter error', u'open heater load', u'heater load less than 10 ohms']

	

	
class slave.lakeshore.ls340.Input(transport, protocol, channels)

	Bases: slave.core.InstrumentBase, _abcoll.Mapping

	
class slave.lakeshore.ls340.InputChannel(transport, protocol, name)

	Bases: slave.core.InstrumentBase

Represents a LS340 input channel.

	Parameters:	
	transport – A transport object.

	protocol – A protocol object.

	name – A string value indicating the input in use.

	Variables:	
	alarm – The alarm configuration, represented by the following tuple
(<enabled>, <source>, <high value>, <low value>, <latch>, <relay>),
where:

	<enabled> Enables or disables the alarm.

	<source> Specifies the input data to check.

	<high value> Sets the upper limit, where the high alarm sets off.

	<low value> Sets the lower limit, where the low alarm sets off.

	<latch> Enables or disables a latched alarm.

	<relay> Specifies if the alarm can affect the relays.

	alarm_status – The high and low alarm status, represented by the
following list: (<high status>, <low status>).

	celsius – The input value in celsius.

	curve – The input curve number. An Integer in the range [0-60].

	filter – The input filter parameters, represented by the following
tuple: (<enable>, <points>, <window>).

	input_type – The input type configuration, represented by the
tuple: (<type>, <units>, <coefficient>, <excitation>, <range>), where

	<type> Is the input sensor type.

	<units> Specifies the input sensor units.

	<coefficient> The input coefficient.

	<excitation> The input excitation.

	<range> The input range.

	kelvin – The kelvin reading.

	linear – The linear equation data.

	linear_equation – The input linear equation parameters.
(<equation>, <m>, <x source>, <b source>,), where

	<equation> is either ‘slope-intercept’ or ‘point-slope’,
meaning ‘y = mx + b’ or ‘y = m(x + b)’.

	<m> The slope.

	<x source> The input data to use, either ‘kelvin’, ‘celsius’ or
‘sensor units’.

	<b source> Either ‘value’, ‘+sp1’, ‘-sp1’, ‘+sp2’ or ‘-sp2’.

	 The b value if <b source> is set to ‘value’.

	linear_status – The linear status register.

	minmax – The min max data, (<min>, <max>), where

	<min> Is the minimum input data.

	<max> Is the maximum input data.

	minmax_parameter – The minimum maximum input function parameters.
(<on/pause>, <source>), where

	<on/pause> Starts/pauses the min/max function. Valid entries are
‘on’, ‘pause’.

	<source> Specifies the input data to process. Valid entries are
‘kelvin’, ‘celsius’, ‘sensor units’ and ‘linear’.

	minmax_status – The min/max reading status.
(<min status>, <max status>), where

	<min status> is the reading status register of the min value.

	<max status> is the reading status register of the max value.

	reading_status – The reading status register.

	sensor_units – The sensor units reading of the input.

	set – The input setup parameters, represented by the following tuple:
(<enable>, <compensation>)

	
READING_STATUS = {0: u'invalid reading', 1: u'old reading', 4: u'temp underrange', 5: u'temp overrange', 6: u'units zero', 7: u'units overrange'}

	

	
class slave.lakeshore.ls340.LS340(transport, scanner=None)

	Bases: slave.iec60488.IEC60488

Represents a Lakeshore model LS340 temperature controller.

The LS340 class implements an interface to the Lakeshore model LS340
temperature controller.

	Parameters:	
	transport – An object, modeling the transport interface, used to
communicate with the real instrument.

	scanner – A string representing the scanner in use. Valid entries are

	None, No scanner is used.

	“3462”, The dual standard input option card.

	“3464”, The dual thermocouple input option card.

	“3465”, The single capacitance input option card.

	“3468”, The eight channel input option card.

	Variables:	
	input – An instance of Input.

	beeper – A boolean value representing the beeper mode. True means
enabled, False means disabled.

	beeping – A Integer value representing the current beeper status.

	busy – A Boolean representing the instrument busy status.

	columnx – A Column instance, x is a placeholder for an integer between
1 and 4.

	com – The serial interface configuration, represented by the following
tuple: (<terminator>, <baud rate>, <parity>).

	<terminator> valid entries are “CRLF”, “LFCR”, “CR”, “LF”

	<baud rate> valid entries are 300, 1200, 2400, 4800, 9600, 19200

	<parity> valid entries are 1, 2, 3. See LS340 manual for meaning.

	datetime – The configured date and time.
(<MM>, <DD>, <YYYY>, <HH>, <mm>, <SS>, <sss>), where

	<MM> represents the month, an Integer in the range 1-12.

	<DD> represents the day, an Integer in the range 1-31.

	<YYYY> represents the year.

	<mm> represents the minutes, an Integer in the range 0-59.

	<SS> represents the seconds, an Integer in the range 0-59.

	<sss> represents the miliseconds, an Integer in the range 0-999.

	digital_io_status – The digital input/output status.
(<input status>, <output status>), where

	<input status> is a Register representing the state of the 5 input
lines DI1-DI5.

	<output status> is a Register representing the state of the 5
output lines DO1-DO5.

	digital_output_param – The digital output parameters.
(<mode>, <digital output>), where:

	<mode> Specifies the mode of the digital output, valid entries are
‘off’, ‘alarms’, ‘scanner’, ‘manual’,

	<digital output> A register to enable/disable the five digital
outputs DO1-DO5, if <mode> is ‘manual’.

	display_fieldx – The display field configuration values. x is just a
placeholder and varies between 1 and 8, e.g. .display_field2.
(<input>, ‘<source>’), where

	<input> Is the string name of the input to display.

	<source> Specifies the data to display. Valid entries are
‘kelvin’, ‘celsius’, , ‘sensor units’, ‘linear’, ‘min’ and
‘max’.

	heater – An instance of the Heater class.

	high_relay – The configuration of the high relay, represented by the
following tuple (<mode>, <off/on>), where

	<mode> specifies the relay mode, either ‘off’ , ‘alarms’ or
‘manual’.

	<off/on> A boolean enabling disabling the relay in manual mode.

	high_relay_status – The status of the high relay, either ‘off’ or
‘on’.

	ieee – The IEEE-488 interface parameters, represented by the following
tuple (<terminator>, <EOI enable>, <address>), where

	<terminator> is None, \r\n, \n\r, \r or
\n.

	<EOI enable> A boolean.

	<address> The IEEE-488.1 address of the device, an integer between
0 and 30.

	key_status – A string representing the keypad status, either
‘no key pressed’ or ‘key pressed’.

	lock – A tuple representing the keypad lock-out and the lock-out code.
(<off/on>, <code>).

	logging – A Boolean value, enabling or disabling data logging.

	logging_params – The data logging parameters.
(<type>, <interval>, <overwrite>, <start mode>), where

	<type> Valid entries are ‘readings’ and ‘seconds’.

	
	<interval> The number of readings between each record if <type>

	is readings and number of seconds between each record otherwise.
Valid entries are 1-3600.

	<overwrite> True if overwrite is enabled, False otherwise.

	<start mode> The start mode, either clear or continue.

Note

If no valid SRAM data card is installed, queriing returns
(‘invalid’, 0, False, ‘clear’).

	loop1 – An instance of the Loop class, representing the first control
loop.

	loop2 – Am instance of the Loop class, representing the second control
loop.

	low_relay – The configuration of the low relay, represented by the
following tuple (<mode>, <off/on>), where

	<mode> specifies the relay mode, either ‘off’ , ‘alarms’ or
‘manual’.

	<off/on> A boolean enabling disabling the relay in manual mode.

	low_relay_status – The status of the low relay, either ‘off’ or
‘on’.

	mode – Represents the interface mode. Valid entries are
“local”, “remote”, “lockout”.

	output1 – First output channel.

	output2 – Second output channel.

	programs – A tuple of 10 program instances.

	program_status – The status of the currently running program
represented by the following tuple: (<program>, <status>). If
program is zero, it means that no program is running.

	revision – A tuple representing the revision information.
(<master rev date>, <master rev number>, <master serial number>,
<switch setting SW1>, <input rev date>, <input rev number>,
<option ID>, <option rev date>, <option rev number>).

	scanner_parameters – The scanner parameters.
(<mode>, <channel>, <intervall>), where

	<mode> represents the scan mode. Valid entries are ‘off’,
‘manual’, ‘autoscan’, ‘slave’.

	<channel> the input channel to use, an integer in the range 1-16.

	<interval> the autoscan intervall in seconds, an integer in the
range 0-999.

	std_curve – A tuple of 20 standard curves. These Curve
instances are read-only.

	user_curve – A tuple of 40 user definable Curve instances.
These are read and writeable.

	
PROGRAM_STATUS = [u'No errors', u'Too many call commands', u'Too many repeat commands', u'Too many end repeat commands', u'The control channel setpoint is not in temperature']

	

	
clear_alarm()

	Clears the alarm status for all inputs.

	
lines()

	The number of program lines remaining.

	
reset_minmax()

	Resets Min/Max functions for all inputs.

	
save_curves()

	Updates the curve flash with the current user curves.

	
scanner

	A string representing the different scanner models supported
by the ls340 temperature controller. Valid entries are:

	“3462”, The dual standard input option card.

	“3464”, The dual thermocouple input option card.

	“3465”, The single capacitance input option card.

	“3468”, The eight channel input option card.

The different scanner options support a different number of input channels.

	
softcal(std, dest, serial, T1, U1, T2, U2, T3=None, U3=None)

	Generates a softcal curve.

	Parameters:	
	std – The standard curve index used to calculate the softcal
curve. Valid entries are 1-20

	dest – The user curve index where the softcal curve is stored.
Valid entries are 21-60.

	serial – The serial number of the new curve. A maximum of 10
characters is allowed.

	T1 – The first temperature point.

	U1 – The first sensor units point.

	T2 – The second temperature point.

	U2 – The second sensor units point.

	T3 – The third temperature point. Default: None.

	U3 – The third sensor units point. Default: None.

	
stop_program()

	Terminates the current program, if one is running.

	
class slave.lakeshore.ls340.Loop(transport, protocol, idx)

	Bases: slave.core.InstrumentBase

Represents a LS340 control loop.

	Parameters:	
	transport – A transport object.

	protocol – A protocol object.

	idx – The loop index.

	Variables:	
	display_parameters – The display parameter of the loop.
(<loop>, <resistance>, <current/power>, <large output enable>), where

	<loop> specifies how many loops should be displayed. Valid entries
are ‘none’, ‘loop1’, ‘loop2’, ‘both’.

	<resistance> The heater load resistance, an integer between 0 and
1000.

	<current/power> Specifies if the heater output should be displayed
as current or power. Valid entries are ‘current’ and ‘power’.

	<large output enable> Disables/Enables the large output display.

	filter – The loop filter state.

	limit – The limit configuration, represented by the following tuple
(<limit>, <pos slope>, <neg slope>, <max current>, <max range>)

	manual_output – The manual output value in percent of full scale.
Valid entries are floats in the range -100.00 to 100.00 with a
resolution of 0.01.

	mode – The control-loop mode. Valid entries are
‘manual’, ‘zone’, ‘open’, ‘pid’, ‘pi’, ‘p’

	parameters – The control loop parameters, a tuple containing
(<input>, <units>, <enabled>, <powerup>), where

	<input> specifies the input channel. Valid entries are ‘A’ and
‘B’.

	<units> The setpoint units. Either ‘kelvin’, ‘celsius’ or
‘sensor’.

	<enabled> A boolean enabling/disabling the control loop.

	<powerup> Specifies if the control loop is enabled/disabled after
powerup.

	pid – The PID values.

	ramp – The control-loop ramp parameters, represented by the following
tuple (<enabled>, <rate>), where

	<enabled> Enables, disables the ramping.

	<rate> Specifies the ramping rate in kelvin/minute.

	ramping – The ramping status. True if ramping and False otherwise.

	setpoint – The control-loop setpoint in its configured units.

	settle – The settle parameters. (<threshold>, <time>), where

	
	<threshold> Specifies the allowable band around the setpoint. Must

	be between 0.00 and 100.00.

	<time> The time in seconds, the reading must stay within the band.
Valid entries are 0-86400.

Note

This command is only available for loop1.

	tuning_status – A boolean representing the tuning status, True if
tuning False otherwise.
.. note:: This attribute is only available for loop1.

	zonex – There are 11 zones, zone1 is the first. The zone attribute
represents the control loop zone table parameters.
(<top>, <p>, <i>, <d>, <mout>, <range>).

	
class slave.lakeshore.ls340.Output(transport, protocol, channel)

	Bases: slave.core.InstrumentBase

Represents a LS340 analog output.

	Parameters:	
	transport – A transport object.

	protocol – A protocol object.

	channel – The analog output channel. Valid are either 1 or 2.

	Variables:	analog – The analog output parameters, represented by the tuple
(<bipolar>, <mode>, <input>, <source>, <high>, <low>, <manual>),
where:

	<bipolar> Enables bipolar output.

	<mode> Valid entries are ‘off’, ‘input’, ‘manual’, ‘loop’.
‘loop’ is only valid for the output channel 2.

	<input> Selects the input to monitor (Has no effect if mode is
not ‘input’).

	<source> Selects the input data, either ‘kelvin’, ‘celsius’,
‘sensor’ or ‘linear’.

	<high> Represents the data value at which 100% is reached.

	<low> Represents the data value at which the minimum value is
reached (-100% for bipolar, 0% otherwise).

	<manual> Represents the data value of the analog output in manual
mode.

	
class slave.lakeshore.ls340.Program(transport, protocol, idx)

	Bases: slave.core.InstrumentBase

Represents a LS340 program.

	Parameters:	
	transport – A transport object.

	protocol – A protocol object.

	idx – The program index.

Note

There is currently no parsing done on program lines. Lines are read and
written as strings according to the LS340 manual.

	
append_line(new_line)

	Appends the new_line to the LS340 program.

	
delete()

	Deletes this program.

	
line(idx)

	Return the i’th program line.

	Parameters:	i – The i’th program line.

	
run()

	Runs this program.

	
class slave.lakeshore.ls370.Curve(transport, protocol, idx, length)

	Bases: slave.core.InstrumentBase

A LS370 curve.

	Parameters:	
	transport – A transport object.

	protocol – A protocol object.

	idx – The curve index.

	length – The curve buffer length.

	Variables:	header – The curve header configuration.
(<name><serial><format><limit><coefficient>), where

	<name> The name of the curve, a string limited to 15 characters.

	<serial> The serial number, a string limited to 10 characters.

	<format> Specifies the curve data format. Valid entries are
‘Ohm/K’ and ‘logOhm/K’.

	<limit> The curve temperature limit in Kelvin.

	<coefficient> The curves temperature coefficient. Valid entries are
‘negative’ and ‘positive’.

The Curve is implementing the collections.sequence protocoll. It models a
sequence of points. These are tuples with the following structure
(<units value>, <temp value>), where

	<units value> specifies the sensor units for this point.

	<temp value> specifies the corresponding temperature in kelvin.

To access the points of this curve, use indexing and slicing operations,
e.g.:

assuming an LS30 instance named ls30, the following will print the
sixth point of the first user curve.
curve = ls370.user_curve[0]
print curve[1] # print second point
print curve[-1] # print last point
print curve[::2] # print every second point

Set the fifth data point to 0.10191 sensor units and 470.000 K.
curve[5] = 0.10191, 470.000

Note

Be aware that the builtin len() function returns the buffer
length, not the number of points.

Warning

In contrast to the LS370 device, point indices start at 0 not 1.

	
delete()

	Deletes this curve.

	
class slave.lakeshore.ls370.Display(transport, protocol, location)

	Bases: slave.core.InstrumentBase

A LS370 Display at the chosen location.

	Parameters:	
	transport – A transport object.

	protocol – A protocol object.

	location – The display location.

	Variables:	config – The configuration of the display.
(<channel>, <source>, <resolution>), where

	<channel> The index of the displayed channel, 0-16, where 0
activates channel scanning.

	<source> The displayed data. Valid entries are ‘kelvin’, ‘ohm’,
‘linear’, ‘min’ and ‘max’

	<resolution> The displayed resolution in number of digits, 4-6.

	
class slave.lakeshore.ls370.Heater(transport, protocol)

	Bases: slave.core.InstrumentBase

An LS370 Heater.

	Parameters:	
	transport – A transport object.

	protocol – A protocol object.

	Variables:	
	manual_output – The manual heater output, a float representing the
percent of current or actual power depending on the heater output
selection.

	output – The heater output in percent of current or actual power
dependant on the heater output selection.

	range – The heater current range. Valid entries are ‘off’,
‘31.6 uA’, ‘100 uA’, ‘316 uA’, ‘1 mA’, ‘3.16 mA’, ‘10 mA’, ‘31.6 mA’,
and ‘100 mA’

	status – The heater status, either ‘no error’ or ‘heater open error’.

	
RANGE = [u'off', u'31.6 uA', u'100 uA', u'316 uA', u'1 mA', u'3.16 mA', u'10 mA', u'31.6 mA', u'100 mA']

	The supported heater ranges.

	
class slave.lakeshore.ls370.Input(transport, protocol, channels)

	Bases: slave.core.InstrumentBase, _abcoll.Sequence

The LS370 Input.

	Parameters:	
	transport – A transport object.

	protocol – A protocol object.

	Variables:	scan –

It is a sequence like interface to each InputChannel.

E.g. to access the kelvin reading of channel 5, Assuming an instance of LS370 named
ls370, one would simply write.:

>>> ls370.input[5].kelvin

To scan the second channel, and activate the autoscan one would write:

>>> ls370.input.scan = 2, True

Note

In contrast to the LS370 internal commands the channel indexing is zero
based.

	
class slave.lakeshore.ls370.InputChannel(transport, protocol, idx)

	Bases: slave.core.InstrumentBase

A LS370 input channel.

	Parameters:	
	transport – A transport object.

	protocol – A protocol object.

	idx – The channel index.

	Variables:	
	alarm – The alarm configuration.
(<enabled>, <source>, <high>, <low>, <deadband>, <latch>), where

	<enable> enables/disables the alarm, valid are True, False.

	<source> The data channel against which the alarm condition is
checked. Either ‘kelvin’, ‘ohm’ or ‘linear’.

	<high> The high alarm value.

	<low> The low alarm value.

	<deadband> The value the source value must change to deactivate
the non-latched alarm.

	<latch> Enables/disables the latched alarm. (A latched alarm stays
active, even if the alarm condition isn’t met anymore).

	alarm_status – The status of the high and low alarm.
(<high state>, <low state>), where

	<high state> is either True`or `False.

	<low state> is either True`or `False.

	config – The input channel configuration.
(<enabled>, <dwell>, <pause>, <curve>, <coefficient>), where

	<enabled> enables/disables the channel, valid are True, False.

	<dwell> The autoscanning dwell time in seconds, 1-200.

	<pause> The change pause time in seconds, 3-200.

	<curve> The curve used by the channel, valid are ‘no curve’ or
0-19 the index of the user curves.

	<coefficient> The temperature coefficient used if no curve is
selected. Valid are ‘negative’ and ‘positive’.

	excitation_power – The current excitation power.

	filter – The filter parameters.
(<enabled>, <settle time>, <window>), where

	<enabled> A boolean enabling/disabling the filtering.

	<settle time> The settle time in seconds, 1-200.

	<window> The filtering window, 1-80 in precent of the fullscale
reading.

	index – The index of the input channel.

	kelvin – The input channel reading in kelvin.

Note

If no curve is present, the reading will be 0..

	linear – Linear equation data.

	linear_equation – The input linear equation parameters.
(<equation>, <m>, <x source>, <b source>,), where

	<equation> is either ‘slope-intercept’ or ‘point-slope’,
meaning ‘y = mx + b’ or ‘y = m(x + b)’.

	<m> The slope.

	<x source> The input data to use, either ‘kelvin’, ‘celsius’ or
‘sensor units’.

	<b source> Either ‘value’, ‘+sp1’, ‘-sp1’, ‘+sp2’ or ‘-sp2’.

	 The b value if <b source> is set to ‘value’.

	minmax – The min max data, (<min>, <max>), where

	<min> Is the minimum input data.

	<max> Is the maximum input data.

	minmax_param – Configures the source data to use with the minmax
filter. Valid are ‘kelvin’, ‘ohm’ and ‘linear’.

	reading_status – The channel reading status. A register with the
following keys

	‘cs overload’ Current source overload.

	‘vcm overload’ Common mode voltage overload.

	‘vmix overload’ Mixer overload.

	‘vdif overload’ Differential overload.

	‘range over’ The selected resistance range is too low.

	‘range under’ The the polarity (+/-) of the current or voltage
leads is wrong and the selected resistance range is too low.

	resistance – The input reading in ohm.

	resistance_range – The resistance range configuration.
(<mode>, <excitation>, <range>, <autorange>, <excitation_enabled>)

	<mode> The excitation mode, either ‘current’ or ‘voltage’.

	<excitation> The excitation range, either 1-22 for current
excitation or 1-12 for voltage excitation.

	
class slave.lakeshore.ls370.LS370(transport, scanner=None)

	Bases: slave.iec60488.IEC60488

A lakeshore mode ls370 resistance bridge.

Represents a Lakeshore model ls370 ac resistance bridge.

	Parameters:	transport – A transport object.

	Variables:	
	baud – The baud rate of the rs232 interface. Valid entries are 300,
1200 and 9600.

	beeper – A boolean value representing the beeper mode. True means
enabled, False means disabled.

	brightness – The brightness of the frontpanel display in percent.
Valid entries are 25, 50, 75 and 100.

	common_mode_reduction – The state of the common mode reduction.

	control_mode – The temperature control mode, valid entries are
‘closed’, ‘zone’, ‘open’ and ‘off’.

	control_params – The temperature control parameters. (<channel>,
<filter>, <units>, <delay>, <output>, <limit>, <resistance>), where

	<channel> The input channel used for temperature control.

	<filter> The filter mode, either ‘filtered’ or ‘unfiltered’.

	<units> The setpoint units, either ‘kelvin’ or ‘ohm’.

	<delay> The delay in seconds used for the setpoint change during
autoscan. An integer between 1 and 255.

	<output> The heater output display, either ‘current’ or ‘power’.

	<limit> The maximum heater range. See Heater.RANGE.

	<resistance> The heater load in ohms. Valid entries are 1. to
100000.

	digital_output – A register enabling/disabling the digital output
lines.

	displays – A tuple of Display instances, representing the 7
available display locations.

	display_locations – The number of displayed locations, between 1 and
8.

	frequency – The excitation frequency. Valid entries are ‘9.8 Hz’,
‘13.7 Hz’ and ‘16.2 Hz’.

Note

This commands takes several seconds to complete

	heater – An instance of the Heater class.

	ieee – The IEEE-488 interface parameters, represented by the following
tuple (<terminator>, <EOI enable>, <address>), where

	<terminator> is None, \r\n, \n\r or \n.

	<EOI enable> A boolean.

	<address> The IEEE-488.1 address of the device, an integer between
0 and 30.

	input – An instance of Input.

	input_change – Defines if range and excitation keys affects all or
only one channel. Valid entries are ‘all’, ‘one’.

	mode – Represents the interface mode. Valid entries are
“local”, “remote”, “lockout”.

	monitor – The monitor output selection, one of ‘off’, ‘cs neg’,
‘cs pos’, ‘vad’, ‘vcm neg’, ‘vcm pos’, ‘vdif’ or ‘vmix’.

	output – A tuple, holding two Output objects

	pid – The pid loop settings. (<p>, <i>, <d>), where

	<p> The proportional gain, a float in the range 0.001 to 1000.

	<i> The integral action, a float in the range 0 to 10000.

	<d> The derivative action, a float in the range 0 to 2500.

	polarity – The polarity of the temperature control. Valid entries are
‘unipolar’ and ‘bipolar’.

	ramp – The setpoint ramping parameters. (<enabled>, <rate>), where

	<enabled> Is a boolean, enabling/disabling the ramping.

	<rate> A float representing the ramping rate in kelvin per minute
in the range 0.001 to 10.

	ramping – The ramping status, either True or False.

	low_relay – The low relay, an instance of Relay.

	high_relay – The high relay, an instance of Relay.

	setpoint – The temperature control setpoint.

	still – The still output value.

Note

The still only works, if it’s properly configured in the analog
output 2.

	all_curves – A Curve instance that can be used to configure
all user curves simultaneously. Instead of iterating of the
user_curve attribute one can use this command. This way less
commands will be send.

	user_curve – A tuple of 20 Curve instances.

	zones – A sequence of 10 Zones. Each zone is represented by a tuple
(<top>, <p>, <i>, <d>, <manual>, <heater>, <low>, <high>, <analog1>
, <analog2>), where

	<top> The setpoint limit of this zone.

	<p> The proportional action, 0.001 to 1000.

	<i> The integral action, 0 to 10000.

	<d> The derivative action, 0 to 10000.

	<manual> The manual output in percent, 0 to 100.

	<heater> The heater range.

	<low> The low relay state, either True or False.

	<high> The high relay state, either True or False.

	<analog1> The output value of the first analog output in percent.
From -100 to 100.

	<analog2> The output value of the second analog output in percent.
From -100 to 100.

	
clear_alarm()

	Clears the alarm status for all inputs.

	
reset_minmax()

	Resets Min/Max functions for all inputs.

	
scanner

	The scanner option in use.

Changing the scanner option changes number of input channels available.
Valid values are

	scanner
	channels

	None
	1

	‘3708’
	8

	‘3716’
	16

	‘3716L’
	16

	
class slave.lakeshore.ls370.Output(transport, protocol, channel)

	Bases: slave.core.InstrumentBase

Represents a LS370 analog output.

	Parameters:	
	transport – A transport object.

	protocol – A protocol object.

	channel – The analog output channel. Valid are either 1 or 2.

	Variables:	
	analog – The analog output parameters, represented by the tuple
(<bipolar>, <mode>, <input>, <source>, <high>, <low>, <manual>),
where:

	<bipolar> Enables bipolar output.

	
	<mode> Valid entries are ‘off’, ‘channel’, ‘manual’, ‘zone’,

	‘still’. ‘still’ is only valid for the output channel 2.

	<input> Selects the input to monitor (Has no effect if mode is
not ‘input’).

	<source> Selects the input data, either ‘kelvin’, ‘ohm’, ‘linear’.

	<high> Represents the data value at which 100% is reached.

	<low> Represents the data value at which the minimum value is
reached (-100% for bipolar, 0% otherwise).

	<manual> Represents the data value of the analog output in manual
mode.

	value – The value of the analog output.

	
class slave.lakeshore.ls370.Relay(transport, protocol, idx)

	Bases: slave.core.InstrumentBase

A LS370 relay.

	Parameters:	
	transport – A transport object.

	protocol – A protocol object.

	idx – The relay index.

	Variables:	
	config – The relay configuration.
(<mode>, <channel>, <alarm>), where

	<mode> The relay mode either ‘off’ ‘on’, ‘alarm’ or ‘zone’.

	
	<channel> Specifies the channel, which alarm triggers the relay.

	Valid entries are ‘scan’ or an integer in the range 1-16.

	
	<alarm> The alarm type triggering the relay. Valid are ‘low’ ‘high’

	or ‘both’.

	status – The relay status.

misc Module

	
class slave.misc.ForwardSequence(iterable, get, set=None)

	Bases: _abcoll.Sequence

Sequence forwarding item access and write operations.

	Parameters:	
	iterable – An iterable of items to be stored.

	get – A callable used on item access, receiving the item.
It’s result is returned.

	set – A callable receiving the item and a value on item set
operations.

Implements a immutable sequence, which forwards item access and write
operations to the stored items.

	
class slave.misc.Measurement(path, measurables)

	Bases: object

Small measurement helper class.

For each call to __call__() a comma separated row, representing the
return values for each callable item in measurables is written to the file
specified by path.

	
close()

	

	
open()

	

	
slave.misc.index(index, length)

	Generates an index.

	Parameters:	
	index – The index, can be positive or negative.

	length – The length of the sequence to index.

	Raises:	IndexError

Negative indices are typically used to index a sequence in reverse order.
But to use them, the indexed object must convert them to the correct,
positive index. This function can be used to do this.

quantum_design Module

	
class slave.quantum_design.ppms.AnalogOutput(transport, protocol, id)

	Bases: slave.core.InstrumentBase

Represents an analog output.

	Variables:	
	id – The analog output id.

	voltage – The voltage present at the analog output channel.

Note

Setting the voltage removes any linkage.

	link – Links a parameter to this analog output. It has the form
(<link>, <full>, <mid>), where

	<link> is the parameter to link. See STATUS_LINK for
valid links.

	<full> the value of the parameter corresponding to full scale output
(10 V).

	<mid> the value of the parameter corresponding to mid sclae output
(0 V).

	
link

	

	
class slave.quantum_design.ppms.BridgeChannel(transport, protocol, id)

	Bases: slave.core.InstrumentBase

Represents the user bridge configuration.

	Variables:	
	id – The user bridge channel id.

	config – The bridge configuration, represented by a tuple of the form
(<excitation>, <power limit>, <dc flag>, <mode>), where

	<excitation> The excitation current in microamps from 0.01 to 5000.

	
	<power limit> The maximum power to be applied in microwatts from

	0.001 to 1000.

	
	<dc flag> Selects the excitation type. Either ‘AC’ or ‘DC’. ‘AC’

	corresponds to a square wave excitation of 7.5 Hz.

	
	<mode> Configures how often the internal analog-to-digital converter

	recalibrates itself. Valid are ‘standart’, ‘fast’ and ‘high res’.

	resistance – The resistance of the user channel in ohm.

	current – The current of the user channel in microamps.

	
class slave.quantum_design.ppms.PPMS(transport, max_field=None)

	Bases: slave.iec60488.IEC60488

A Quantum Design Model 6000 PPMS.

	Parameters:	
	transport – A transport object.

	max_field – The maximum magnetic field allowed in Oersted. If None,
the default, it’s read back from the ppms.

Note

The ppms needs a newĺine ‘\n’ character as message terminator. Using
delay between read and write operations is recommended as well.

	Variables:	
	advisory_number – The advisory code number, a read only integer in the
range 0 to 999.

	chamber – The configuration of the sample chamber. Valid entries are
‘seal’, ‘purge seal’, ‘vent seal’, ‘pump’ and ‘vent’, where

	‘seal’ seals the chamber immediately.

	‘purge seal’ purges and then seals the chamber.

	‘vent seal’ ventilates and then seals the chamber.

	‘pump’ pumps the chamber continuously.

	‘vent’ ventilates the chamber continuously.

	sample_space_pressure – The pressure of the sample space in user units.
(read only)

	system_status – The general system status.

Configuration

	Variables:	
	bridges – A list of BridgeChannel instances representing all
four user bridges.

Note

Python indexing starts at 0, so the first bridge has the index 0.

	date – The configured date of the ppms computer represented by a python
datetime.date object.

	time – The configured time of the ppms computer, represented by a python
datetime.time object.

	analog_output – A tuple of AnalogOutput instances
corresponding to the four analog outputs.

	digital_input – The states of the digital input lines.
A dict with the following keys

	Keys
	Pinouts

	‘Motor Port - Limit 1’
	P10-4,5

	‘Motor Port - Limit 2’
	P10-9,5

	‘Aux Port - Sense 1’
	P8-18,19

	‘Aux Port - Sense 2’
	P8-6,19

	‘Ext Port - Busy’
	P11-9

	‘Ext Port - User’
	P11-5

A dict value of True means the line is asserted.

(read only)

	digital_output – The state of the digital output lines. A dict with
the following keys

	Keys
	Connector Port
	Pinouts

	‘Drive Line 1’
	Auxiliary Port
	P8-1,14

	‘Drive Line 2’
	Auxiliary Port
	P8-2,15

	‘Drive Line 3’
	Auxiliary Port
	P8-3,16

	‘Actuator Drive’
	Motor Port
	P10-3,8

A dict value of True means the line is set to -24 V output.
Setting it with a dict containing only some keys will only change these.
The other lines will be left unchanged.

	driver_output – A CommandSequence representing the driver
outputs of channel 1 and 2. Each channel is represented by a tuple of
the form (<current>, <power limit>), where

	<current> is the current in mA, in the range 0 to 1000.

	<power limit> is the power limit in W, in the range 0 to 20.

Note

Python indexing starts with 0. Therefore channel 1 has the index 0.

	external_select – The state of the external select lines. A dict with
the following keys

	Key
	Connector Port
	Pinouts

	Select
	1 External Port
	P11-1,6

	Select
	2 External Port
	P11-2,7

	Select
	3 External Port
	P11-3,8

A dict value of True means the line is asserted (switch closed).
Setting it with a dict containing only some keys will only change these.
The other lines will be left unchanged.

	revision – The revision number. (read only)

Helium Level Control

	Variables:	level – The helium level, represented by a tuple of the form
(<level>, <age>), where

	<level> The helium level in percent.

	<age> is the age of the reading. Either ‘>1h’, ‘<1h’ or
‘continuous’.

Magnet Control

	Variables:	
	field – The current magnetic field in Oersted(read only).

	target_field – The magnetic field configuration, represented by the
following tuple (<field>, <rate>, <approach mode>, <magnet mode>),
where

	<field> is the magnetic field setpoint in Oersted with a
resolution of 0.01 Oersted. The min and max fields depend on the
magnet used.

	<rate> is the ramping rate in Oersted/second with a resolution of
0.1 Oersted/second. The min and max values depend on the magnet
used.

	<approach mode> is the approach mode, either ‘linear’,
‘no overshoot’ or ‘oscillate’.

	<magnet mode> is the state of the magnet at the end of the
charging process, either ‘persistent’ or ‘driven’.

	magnet_config – The magnet configuration represented by the following
tuple (<max field>, <B/I ratio>, <inductance>, <low B charge volt>,
<high B charge volt>, <switch heat time>, <switch cool time>), where

	<max field> is the max field of the magnet in Oersted.

	<B/I ratio> is the field to current ratio in Oersted/A.

	<inductance> is the inductance in Henry.

	<low B charge volt> is the charging voltage at low B fields in volt.

	<high B charge volt> is the chargin voltage at high B fields in
volt.

	<switch heat time> is the time it takes to open the persistent
switch in seconds.

	<switch cool time> is the time it takes to close the persistent
switch in seconds.

Sample Position

	Variables:	
	move_config – The move configuration, a tuple consisting of
(<unit>, <unit/step>, <range>), where

	<unit> The unit, valid are ‘steps’, ‘degree’, ‘radian’, ‘mm’, ‘cm’,
‘mils’ and ‘inch’.

	<unit/step> the units per step.

	<range> The allowed travel range.

	move_limits – The position of the limit switch and the max travel
limit, represented by the following tuple
(<lower limit>, <upper limit>), where

	<lower limit> The lower limit represents the position of the limit
switch in units specified by the move configuration.

	<upper limit> The upper limit in units specified by the move
configuration. It is defined by the position of the limit switch and
the configured travel range.

(read only)

	position – The current sample position.

Temperature Control

	Variables:	
	temperature – The temperature at the sample position in Kelvin
(read only).

	target_temperature – The temperature configuration, a tuple consisting of
(<temperature>, <rate>, <approach mode>), where

	<temperature> The temperature setpoint in kelvin in the range 1.9
to 350.

	<rate> The sweep rate in kelvin per minute in the range 0 to 20.

	<approach mode> The approach mode, either ‘fast’ or ‘no overshoot’.

	
beep(duration, frequency)

	Generates a beep.

	Parameters:	
	duration – The duration in seconds, in the range 0.1 to 5.

	frequency – The frequency in Hz, in the range 500 to 5000.

	
date

	

	
digital_output

	

	
external_select

	

	
field

	The field at sample position.

	
levelmeter(rate)

	Changes the measuring rate of the levelmeter.

	Parameters:	rate – Valid are ‘on’, ‘off’, ‘continuous’ and ‘hourly’. ‘on’
turns on the level meter, takes a reading and turns itself off.
In ‘continuous’ mode, the readings are constantly updated. If no
reading is requested within 60 seconds, the levelmeter will be
turned off. ‘off’ turns off hourly readings.

Note

It takes approximately 10 seconds until a measured level is
available.

	
move(position, slowdown=0)

	Move to the specified sample position.

	Parameters:	
	position – The target position.

	slowdown – The slowdown code, an integer in the range 0 to 14,
used to scale the stepper motor speed. 0, the default, is the
fastest rate and 14 the slowest.

	
move_to_limit(position)

	Move to limit switch and define it as position.

	Parameters:	position – The new position of the limit switch.

	
redefine_position(position)

	Redefines the current position to the new position.

	Parameters:	position – The new position.

	
scan_field(measure, field, rate, mode=u'persistent', delay=1)

	Performs a field scan.

Measures until the target field is reached.

	Parameters:	
	measure – A callable called repeatedly until stability at the
target field is reached.

	field – The target field in Oersted.

Note

The conversion is 1 Oe = 0.1 mT.

	rate – The field rate in Oersted per minute.

	mode – The state of the magnet at the end of the charging
process, either ‘persistent’ or ‘driven’.

	delay – The time delay between each call to measure in seconds.

	Raises TypeError:

		if measure parameter is not callable.

	
scan_temperature(measure, temperature, rate, delay=1)

	Performs a temperature scan.

Measures until the target temperature is reached.

	Parameters:	
	measure – A callable called repeatedly until stability at target
temperature is reached.

	temperature – The target temperature in kelvin.

	rate – The sweep rate in kelvin per minute.

	delay – The time delay between each call to measure in seconds.

	
set_field(field, rate, approach=u'linear', mode=u'persistent', wait_for_stability=True, delay=1)

	Sets the magnetic field.

	Parameters:	
	field – The target field in Oersted.

Note

The conversion is 1 Oe = 0.1 mT.

	rate – The field rate in Oersted per minute.

	approach – The approach mode, either ‘linear’, ‘no overshoot’ or
‘oscillate’.

	mode – The state of the magnet at the end of the charging
process, either ‘persistent’ or ‘driven’.

	wait_for_stability – If True, the function call blocks until
the target field is reached and stable.

	delay – Specifies the frequency in seconds how often the magnet
status is checked. (This has no effect if wait_for_stability is
False).

	
set_temperature(temperature, rate, mode=u'fast', wait_for_stability=True, delay=1)

	Sets the temperature.

	Parameters:	
	temperature – The target temperature in kelvin.

	rate – The sweep rate in kelvin per minute.

	mode – The sweep mode, either ‘fast’ or ‘no overshoot’.

	wait_for_stability – If wait_for_stability is True, the function call blocks
until the target temperature is reached and stable.

	delay – The delay specifies the frequency how often the status is checked.

	
shutdown()

	The temperature controller shutdown.

Invoking this method puts the PPMS in standby mode, both drivers used
to control the system temperature are turned off and helium flow is set
to a minimum value.

	
system_status

	The system status codes.

	
temperature

	The current temperature at the sample position.

	
time

	

	
slave.quantum_design.ppms.STATUS_CHAMBER = {0: u'unknown', 1: u'purged, sealed', 2: u'vented, sealed', 3: u'sealed, condition unknown', 4: u'performing purge/seal', 5: u'performing vent/seal', 8: u'pumping continuously', 9: u'venting continuously', 15: u'failure'}

	Chamber status codes.

	
slave.quantum_design.ppms.STATUS_DIGITAL_INPUT = {1: u'Motor Port - Limit 1', 2: u'Motor Port - Limit 2', 3: u'Aux Port - Sense 1', 4: u'Aux Port - Sense 2', 5: u'Ext Port - Busy', 6: u'Ext Port - User'}

	Status of digital input lines.

	
slave.quantum_design.ppms.STATUS_DIGITAL_OUTPUT = {0: u'Drive Line 1', 1: u'Drive Line 2', 2: u'Drive Line 3', 3: u'Actuator Drive'}

	Status of the digital output lines.

	
slave.quantum_design.ppms.STATUS_EXTERNAL_SELECT = {0: u'Select 1', 1: u'Select 2', 2: u'Select 3'}

	Status of the external select lines.

	
slave.quantum_design.ppms.STATUS_LINK = {0: None, 1: u'Temperature', 2: u'Tield', 3: u'Position', 4: u'User Bridge CH1 Ohm', 5: u'User Bridge CH1 A', 6: u'User Bridge CH2 Ohm', 7: u'User Bridge CH2 A', 8: u'User Bridge CH3 OHM', 9: u'User Bridge CH3 A', 10: u'User Bridge CH4 Ohm', 11: u'User Bridge CH4 A', 12: u'Signal Input CH1', 13: u'Signal Input CH2', 14: u'Digital Input Aux, Ext', 15: u'User Driver CH1 mA', 16: u'User Driver CH1 W', 17: u'User Driver CH2 mA', 18: u'User Driver CH2 W', 19: u'Sample Space Pressure', 20: u'User Mapped Item', 21: u'User Mapped Item', 22: u'User Mapped Item', 23: u'User Mapped Item', 24: u'User Mapped Item', 25: u'User Mapped Item', 26: u'User Mapped Item', 27: u'User Mapped Item', 28: u'User Mapped Item', 29: u'User Mapped Item'}

	The linking status.

	
slave.quantum_design.ppms.STATUS_MAGNET = {0: u'unknown', 1: u'persistent, stable', 2: u'persist switch warming', 3: u'persist switch cooling', 4: u'driven, stable', 5: u'driven, final approach', 6: u'charging', 7: u'discharging', 8: u'current error', 15: u'failure'}

	Magnet status codes.

	
slave.quantum_design.ppms.STATUS_SAMPLE_POSITION = {0: u'unknown', 1: u'stopped', 5: u'moving', 8: u'limit', 9: u'index', 15: u'failure'}

	Sample Position status codes.

	
slave.quantum_design.ppms.STATUS_TEMPERATURE = {0: u'unknown', 1: u'normal stability at target temperature', 2: u'stable', 5: u'within tolerance, waiting for equilibrium', 6: u'temperature not in tolerance, not valid', 7: u'filling/emptying reservoir', 10: u'standby mode invoked', 13: u'temperature control disabled', 14: u'request cannot complete, impedance not functioning', 15: u'failure'}

	Temperature controller status code.

signal_recovery Module

	
class slave.signal_recovery.sr7225.Float(min=None, max=None, *args, **kw)

	Bases: slave.types.Float

Custom float class used to correct a bug in the SR7225 firmware.

When the SR7225 is queried in floating point mode and the value is exactly
zero, it appends a x00 value, a null byte. To workaround this firmware
bug, the null byte is stripped before the conversion to float happens.

	
class slave.signal_recovery.sr7225.SR7225(transport)

	Bases: slave.core.InstrumentBase

Represents a Signal Recovery SR7225 lock-in amplifier.

	Parameters:	transport – A transport object.

Signal Channel

	Variables:	
	current_mode – The current mode, either ‘off’, ‘high bandwidth’ or
‘low noise’.

	voltage_mode – The voltage mode, either ‘test’, ‘A’ or ‘A-B’.
The ‘test’ mode corresponds to both inputs grounded.

	fet – The voltage mode input device control. Valid entries are
‘bipolar’ and ‘fet’, where

	‘bipolar’ is a bipolar device with 10kOhm input impedance and
2 nV/sqrt(Hz) voltage noise at 1 kHz.

	‘fet’ 10MOhm input impedance and 5nV/sqrt(Hz) voltage noise at
1kHz.

	grounding – The input connector shield grounding mode. Valid entries
are ‘ground’ and ‘float’.

	coupling – The input connector coupling, either ‘ac’ or ‘dc’.

	sensitivity – The full-scale sensitivity. The valid entries depend on
the current mode.

	‘off’
	‘high bandwidth’
	‘low noise’

	‘2 nV’
	‘2 fA’
	‘2 fA’

	‘5 nV’
	‘5 fA’
	‘5 fA’

	‘10 nV’
	‘10 fA’
	‘10 fA’

	‘20 nV’
	‘20 fA’
	‘20 fA’

	‘50 nV’
	‘50 fA’
	‘50 fA’

	‘100 nV’
	‘100 fA’
	‘100 fA’

	‘200 nV’
	‘200 fA’
	‘200 fA’

	‘500 nV’
	‘500 fA’
	‘500 fA’

	‘1 uV’
	‘1 pA’
	‘1 pA’

	‘2 uV’
	‘2 pA’
	‘2 pA’

	‘5 uV’
	‘5 pA’
	‘5 pA’

	‘10 uV’
	‘10 pA’
	‘10 pA’

	‘20 uV’
	‘20 pA’
	‘20 pA’

	‘50 uV’
	‘50 pA’
	‘50 pA’

	‘100 uV’
	‘100 pA’
	‘100 pA’

	‘200 uV’
	‘200 pA’
	200 pA’

	‘500 uV’
	‘500 pA’
	‘500 pA’

	‘1 mV’
	‘1 nA’
	‘1 nA’

	‘2 mV’
	‘2 nA’
	‘2 nA’

	‘5 mV’
	‘5 nA’
	‘5 nA’

	‘10 mV’
	‘10 nA’
	—

	‘20 mV’
	‘20 nA’
	—

	‘50 mV’
	‘50 nA’
	—

	‘100 mV’
	‘100 nA’
	—

	‘200 mV’
	‘200 nA’
	—

	‘500 mV’
	‘500 nA’
	—

	‘1 V’
	‘1 uA’
	—

	ac_gain – The gain of the signal channel amplifier. See SR7230.AC_GAIN
for valid values.

	ac_gain_auto – A boolean corresponding to the ac gain automatic mode.
It is False if the ac_gain is under manual control, and True
otherwise.

	line_filter – The line filter configuration.
(<filter>, <frequency>), where

	<filter> Is the filter mode. Valid entries are ‘off’, ‘notch’,
‘double’ or ‘both’.

	<frequency> Is the notch filter center frequency, either ‘60Hz’
or ‘50Hz’.

	sample_frequency – The sampling frequency. An integer between 0 and 2,
corresponding to three different sampling frequencies near 166kHz.

Reference channel

	Variables:	
	reference – The reference input mode, either ‘internal’, ‘ttl’ or
‘analog’.

	harmonic – The reference harmonic mode, an integer between 1 and 32
corresponding to the first to 32. harmonic.

	reference_phase – The phase of the reference signal, a float ranging
from -360.00 to 360.00 corresponding to the angle in degrees.

	reference_frequency – A float corresponding to the reference frequency
in Hz. (read only)

Note

If reference is not ‘internal’ the reference frequency
value is zero if the reference channel is unlocked.

Signal channel output filters

	Variables:	
	slope – The output lowpass filter slope in dB/octave, either ‘6 dB’,
‘12 dB’, ‘18 dB’ or ‘24 dB’.

	time_constant – A float representing the time constant in seconds. See
TIME_CONSTANT for the available values.

	sync – A boolean value, representing the state of the synchronous time
constant mode.

Signal channel output amplifiers

	Variables:	
	x_offset – The x-channel output offset control.
(<enabled>, <range>), where

	<enabled> A boolean enabling/disabling the output offset.

	<range> The range of the offset, an integer between -30000 and
30000 corresponding to +/- 300%.

	y_offset – The y-channel output offset control.
(<enabled>, <range>), where

	<enabled> A boolean enabling/disabling the output offset.

	<range> The range of the offset, an integer between -30000 and
30000 corresponding to +/- 300%.

	expand – The expansion control, either ‘off’, ‘x’, ‘y’ or
‘both’.

	channel1_output – The output of CH1 connector of the rear panel
Either ‘x’, ‘y’, ‘r’, ‘phase1’, ‘phase2’, ‘noise’,
‘ratio’ or ‘log ratio’.

	channel2_output – The output of CH2 connector of the rear panel
Either ‘x’, ‘y’, ‘r’, ‘phase1’, ‘phase2’, ‘noise’,
‘ratio’ or ‘log ratio’.

Instrument outputs

	Variables:	
	x – A float representing the X-channel output in either volt or
ampere. (read only)

	y – A float representing the Y-channel output in either volt or
ampere. (read only)

	xy – X and Y-channel output with the following format (<x>, <y>).
(read only)

	r – The signal magnitude, as float. (read only)

	theta – The signal phase, as float. (read only)

	r_theta – The magnitude and the signal phase. (<r>, <theta>).
(read only)

	ratio – The ratio equivalent to X/ADC1. (read only)

	log_ratio – The ratio equivalent to log(X/ADC1). (read only)

	noise – The square root of the noise spectral density measured at the
Y channel output. (read only)

	noise_bandwidth – The noise bandwidth. (read only)

	noise_output – The noise output, the mean absolute value of the Y
channel. (read only)

	star – The star mode configuration, one off ‘x’, ‘y’, ‘r’,
‘theta’, ‘adc1’, ‘xy’, ‘rtheta’, ‘adc12’

Internal oscillator

	Variables:	
	amplitude – A float between 0. and 5. representing the oscillator
amplitude in V rms.

	amplitude_start – Amplitude sweep start value.

	amplitude_stop – Amplitude sweep end value.

	amplitude_step – Amplitude sweep amplitude step.

	frequency – The oscillator frequency in Hz. Valid entries are 0. to
1.2e5.

	frequency_start – The frequency sweep start value.

	frequency_stop – The frequency sweep stop value.

	frequency_step – The frequency sweep step size and sweep type.
(<step>, <mode>), where

	<step> The step size in Hz.

	<mode> The sweep mode, either ‘log’ or ‘linear’.

	sync_oscillator – The state of the syncronous oscillator (demodulator)
mode.

	sweep_rate – The frequency and amplitude sweep step rate in time per
step. Valid entries are 0.05 to 1000. in 0.005 steps representing the
time in seconds.

Auxiliary outputs

	Variables:	
	dac1 – The voltage of the auxiliary output 1 on the rear panel, a
float between +/- 12.00.

	dac2 – The voltage of the auxiliary output 2 on the rear panel, a
float between +/- 12.00.

	output_port – The bits to be output on the rear panel digital output
port, an Integer between 0 and 255.

Auxiliary inputs

	Variables:	
	adc1 – The auxiliary analog-to-digital input 1.

	adc2 – The auxiliary analog-to-digital input 2.

	adc_trigger_mode – The trigger mode of the auxiliary ADC inputs,
represented by an integer between 0 and 13.

	burst_time – The burst time per point rate for the ADC1 and ADC2.
An integer between 25 and 5000 when storing only to ADC1 and 56 to 5000
when storing to ADC1 and ADC2.

Note

The lower boundary of 56 in the second case is not tested by slave
itself.

Output data curve buffer

	Variables:	
	curve_buffer_settings – The curve buffer settings define what is to be
stored in the curve buffer.

	curve_buffer_length – The length of the curve buffer. The max value
depends on the the curve_buffer_settings.

	storage_intervall – The storage intervall, an integer representing the
time between datapoints in miliseconds.

	event_marker – If the ‘event’ flag of the
curve_buffer_settings is True, the content of the event
marker variable, an integer between 0 and 32767, is stored for each
data point.

	measurement_status – The curve acquisition status.
(<acquisition status>, <sweeps>, <lockin status>, <points>), where

	<acquisition status> is the curve acquisition status. It is either
‘no activity’, ‘td running’, ‘tdc running’, ‘td halted’ or
‘tdc halted’.

	<sweeps> The number of sweeps acquired.

	<lockin status> The content of the status register, equivalent to
status.

	<points> The number of points acquired.

Computer interfaces

	Variables:	
	rs232 – The rs232 settings. (<baud rate>, <settings>), where

	<baud rate> The baud rate in bits per second. Valid entries are
75, 110, 134.5, 150, 300, 600, 1200, 1800, 2000,
2400, 4800, 9600 and 19200.

	<settings> The sr7225 uses a 5bit register to configure the rs232
interface.

	‘9bit’ If it is True, data + parity use 9 bits and 8 bits
otherwise.

	‘parity’ If it’s True, a single parity bit is used.
If it’s False no parity bit is used.

	‘odd parity’ If it is True odd parity is used and even
otherwise.

	‘echo’ If it’s True, echo is enabled.

	‘promt’ If it’s True, promt is enabled.

	gpib – The gpib configuration. (<channel>, <terminator>), where

	<channel> Is the gpib communication channel, an integer between 0
and 31.

	<terminator> The command terminator, either ‘CR’, ‘CR echo’,
‘CRLF’, ‘CRLF echo’, ‘None’ or ‘None echo’. ‘CR’ is the
carriage return, ‘LF’ the linefeed. When echo is on, every command
or response of the gpib interface is echoed to the rs232 interface.

	delimiter – The response data separator. Valid entries are 13 or 32 to
125 representing the ascii value of the character in use.

Warning

This command does not change the response data separator of the
commands in use. Using it might lead to errors.

	status – The sr7225 status register.

	status_enable – The status enable register is used to mask the bits of
the status register, which generate a service request.

	overload_status – The overload status register.

	remote – The remote mode of the front panel.

Instrument identification

	Variables:	
	identification – The identification, it responds with ‘7225’.

	revision – The firmware revision. A multiline string.

Warning

Not every transport can handle multiline responses.

	version – The firmware version.

Frontpanel

	Variables:	lights – The status of the front panel lights. True if these are
enabled, False otherwise.

	
AC_GAIN = [u'0 dB', u'10 dB', u'20 dB', u'30 dB', u'40 dB', u'50 dB', u'60 dB', u'70 db', u'80 dB', u'90 dB']

	

	
BAUD_RATE = [75, 110, 134.5, 150, 300, 600, 1200, 1800, 2000, 2400, 4800, 9600, 19200]

	All valid baud rates of the rs232 interface.

	
CURVE_BUFFER = {0: u'x', 1: u'y', 2: u'r', 3: u'theta', 4: u'sensitivity', 5: u'adc1', 6: u'adc2', 7: u'7', 8: u'dac1', 9: u'dac2', 10: u'noise', 11: u'ratio', 12: u'log ratio', 13: u'event', 14: u'reference frequency bits 0-15', 15: u'reference frequency bits 16-32'}

	The definition of the curve buffer register bits. To change the curve
buffer settings use the curve_buffer_settings attribute.

	
OVERLOAD_BYTE = {1: u'ch1 output overload', 2: u'ch2 output overload', 3: u'y output overload', 4: u'x output overload', 6: u'input overload', 7: u'reference unlock'}

	The overload byte definition.

	
RS232 = {0: u'9bit', 1: u'parity', 2: u'odd parity', 3: u'echo', 4: u'promt'}

	The rs232 settings register definition.

	
SENSITIVITY_CURRENT_HIGHBW = [u'2 fA', u'5 fA', u'10 fA', u'20 fA', u'50 fA', u'100 fA', u'200 fA', u'500 fA', u'1 pA', u'2 pA', u'5 pA', u'10 pA', u'20 pA', u'50 pA', u'100 pA', u'200 pA', u'500 pA', u'1 nA', u'2 nA', u'5 nA', u'10 nA', u'20 nA', u'50 nA', u'100 nA', u'200 nA', u'500 nA', u'1 uA']

	

	
SENSITIVITY_CURRENT_LOWNOISE = [u'2 fA', u'5 fA', u'10 fA', u'20 fA', u'50 fA', u'100 fA', u'200 fA', u'500 fA', u'1 pA', u'2 pA', u'5 pA', u'10 pA', u'20 pA', u'50 pA', u'100 pA', u'200 pA', u'500 pA', u'1 nA', u'2 nA', u'5 nA', u'10 nA']

	

	
SENSITIVITY_VOLTAGE = [u'2 nV', u'5 nV', u'10 nV', u'20 nV', u'50 nV', u'100 nV', u'200 nV', u'500 nV', u'1 uV', u'2 uV', u'5 uV', u'10 uV', u'20 uV', u'50 uV', u'100 uV', u'200 uV', u'500 uV', u'1 mV', u'2 mV', u'5 mV', u'10 mV', u'20 mV', u'50 mV', u'100 mV', u'200 mV', u'500 mV', u'1 V']

	

	
STATUS_BYTE = {0: u'cmd complete', 1: u'invalid cmd', 2: u'cmd param error', 3: u'reference unlock', 4: u'overload', 5: u'new adc values after external trigger', 6: u'asserted srq', 7: u'data available'}

	

	
TIME_CONSTANT = [1e-05, 2e-05, 4e-05, 8e-05, 0.00016, 0.00032, 0.00064, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000.0, 2000.0, 5000.0, 10000.0, 20000.0, 50000.0, 100000.0]

	All valid time constant values.

	
auto_measure()

	Triggers the auto measure mode.

	
auto_offset()

	Triggers the auto offset mode.

	
auto_phase()

	Triggers the auto phase mode.

	
auto_sensitivity()

	Triggers the auto sensitivity mode.

When the auto sensitivity mode is triggered, the SR7225 adjustes the
sensitivity so that the signal magnitude lies in between 30% and 90%
of the full scale sensitivity.

	
halt()

	Halts the data acquisition.

	
init_curves()

	Initializes the curve storage memory and its status variables.

Warning

All records of previously taken curves is removed.

	
lock()

	Updates all frequency-dependent gain and phase correction
parameters.

	
reset(complete=False)

	Resets the lock-in to factory defaults.

	Parameters:	complete – If True all settings are reseted to factory defaults.
If it’s False, all settings are reseted to factory defaults with the
exception of communication and LCD contrast settings.

	
sensitivity

	

	
start_afsweep()

	Starts a frequency and amplitude sweep.

	
start_asweep(start=None, stop=None, step=None)

	Starts a amplitude sweep.

	Parameters:	
	start – Sets the start frequency.

	stop – Sets the target frequency.

	step – Sets the frequency step.

	
start_fsweep(start=None, stop=None, step=None)

	Starts a frequency sweep.

	Parameters:	
	start – Sets the start frequency.

	stop – Sets the target frequency.

	step – Sets the frequency step.

	
stop()

	Stops/Pauses the current sweep.

	
take_data(continuously=False)

	Starts data acquisition.

	Parameters:	continuously – If False, data is written until the buffer is
full. If its True, the data buffer is used as a circular buffer.
That means if data acquisition reaches the end of the buffer it
continues at the beginning.

	
take_data_triggered(mode)

	Starts triggered data acquisition.

	Parameters:	mode – If mode is ‘curve’, a trigger signal starts the
acquisition of a complete curve or set of curves. If its ‘point’,
only a single data point is stored.

Implements the signal recovery sr7230 driver.

The following example shows how to use the fast curve buffer to acquire data.

	::

	import time
from slave.transport import Socket
from slave.signal_recovery import SR7230

lockin = SR7230(Socket(address=(‘192.168.178.1’, 50000)))

lockin.fast_buffer.enabled = True # Use fast curve buffer.
lockin.fast_buffer.storage_interval = 8 # Take date every 8 us.
lockin.fast_buffer.length = 100000 # Store the max number of points
lockin.take_data() # Start data acquisition immediately.

	while lockin.acquisition_status[0] == ‘on’:

	time.sleep(0.1)

x, y = lockin.fast_buffer[‘x’], lockin.fast_buffer[‘y’]

The fast buffer can store just a limited amount of variables. The standard
buffer is a lot more flexible. The following examples shows how to use it to
store the sensitivity, x and y values.

lockin.standard_buffer.enabled = True
lockin.standard_buffer.definition = 'X', 'Y', 'sensitivity'
lockin.standard_buffer.storage_interval = 1000
lockin.standard_buffer.length = 1000
lockin.take_data()

while lockin.acquisition_status[0] == 'on':
 time.sleep(0.1)

Note: The x and y values are not stored in absolute units. They are in
relative units compared to the chosen senitivity.
sensitivity = sr7230.standard_buffer['sensitivity']
x = sr7230.standard_buffer['x']
y = sr7230.standard_buffer['y']

	
class slave.signal_recovery.sr7230.AmplitudeModulation(transport, protocol)

	Bases: slave.core.InstrumentBase

Represents the amplitude modulation commands.

	Variables:	
	center (float) – The amplitude modulation center voltage. A floating
point in the range -10 to 10 in volts.

	depth (integer) – The amplitude modulation depth in percent in the range
0 - 100.

	filter (int) – The amplitude modulation filter control. An integer
in the range 0 - 10, where 0 is the widest bandwidth and 10 is the
lowest.

	source – The amplitude modulation source voltage used to modulate the
oscillator amplitude. Valid are ‘adc1’ and ‘external’.

	span (float) – The amplitude modulation span voltage in volts. A float
in the range -10 to 10.

Note

The sum of center and span voltage can’t exceed +/- 10V.

	
class slave.signal_recovery.sr7230.DAC(transport, protocol, idx)

	Bases: slave.core.InstrumentBase

	Variables:	
	voltage – The user specified DAC output voltage.

	output – Defines which output apears on the DAC. The allowed values
depend on the DAC channel. See OUTPUT.

	
OUTPUT = [(u'x1', u'noise', u'ratio', u'logratio', u'equation1', u'equation2', u'user', u'demod1', u'r2'), (u'y1', u'noise', u'ratio', u'logratio', u'equation1', u'equation2', u'user', u'ext adc monitor', u'theta2'), (u'r1', u'noise', u'ratio', u'logratio', u'equation1', u'equation2', u'user', u'demod2', u'x2'), (u'theta1', u'noise', u'ratio', u'logratio', u'equation1', u'equation2', u'user', u'sync', u'y2')]

	

	
class slave.signal_recovery.sr7230.Demodulator(transport, protocol, idx)

	Bases: slave.core.InstrumentBase

Implements the dual reference mode commands.

Note

These commands only work if the lockin is in dual reference mode. See
reference_mode.

	Variables:	
	x – A float representing the X-channel output in either volt or
ampere. (read only)

	y – A float representing the Y-channel output in either volt or
ampere. (read only)

	x_offset – The x-channel output offset control.
(<enabled>, <range>), where

	<enabled> A boolean enabling/disabling the output offset.

	<range> The range of the offset, an integer between -30000 and
30000 corresponding to +/- 300%.

	y_offset – The y-channel output offset control.
(<enabled>, <range>), where

	<enabled> A boolean enabling/disabling the output offset.

	<range> The range of the offset, an integer between -30000 and
30000 corresponding to +/- 300%.

	xy – X and Y-channel output with the following format (<x>, <y>).
(read only)

	r – The signal magnitude, as float. (read only)

	theta – The signal phase, as float. (read only)

	r_theta – The magnitude and the signal phase. (<r>, <theta>).
(read only)

	reference_phase – The phase of the reference signal, a float ranging
from -360 to 360 corresponding to the angle in degrees with a resolution
of mili degree.

	harmonic – The reference harmonic mode, an integer between 1 and 128
corresponding to the first to 127 harmonics.

	slope – The output lowpass filter slope in dB/octave, either ‘6 dB’,
‘12 dB’, ‘18 dB’ or ‘24 dB’.

Note

If :attr:¸.noise_measurement` or fastmode is enabled, only
‘6 dB’ and ‘12 dB’ are valid.

	time_constant – The filter time constant. See
TIME_CONSTANT for proper values.

Note

If noise_measurement is enabled, only ‘500 us’, ‘1 ms’,
‘2 ms’, ‘5 ms’ and ‘10 ms’ are valid.

	sensitivity – The full-scale sensitivity. The valid entries depend on
the current mode. See sensitivity for valid entries.

	
auto_offset()

	Triggers the auto offset mode.

	
auto_phase()

	Triggers the auto phase mode.

	
auto_sensitivity()

	Triggers the auto sensitivity mode.

When the auto sensitivity mode is triggered, the SR7225 adjustes the
sensitivity so that the signal magnitude lies in between 30% and 90%
of the full scale sensitivity.

	
sensitivity

	

	
class slave.signal_recovery.sr7230.DigitalPort(transport, protocol)

	Bases: slave.core.InstrumentBase

The digital port configuration.

	Variables:	
	output – Defines which ports are configured as outputs.

	value – Reads the bit state of all lines but writes only to output
lines.

	
DIGITAL_OUTPUT = {0: u'DO', 1: u'D1', 2: u'D2', 3: u'D3', 4: u'D4', 5: u'D5', 6: u'D6', 7: u'D7'}

	

	
class slave.signal_recovery.sr7230.Equation(transport, protocol, idx)

	Bases: slave.core.InstrumentBase

The equation commands.

An equation is defined as:

(A +/- B) * C

 D

	Variables:	
	value – The value of the equation calculation. (read only)

	define – A tuple defining the equation parameter;
(<A>, <op>, , <C>, <D>) where

	<op> is either ‘+’ or ‘-‘.

	<A>, , <C>, <D> is one of INPUT.

	c1 – Equation constant c1, a float in the range -30. to 30.

	c2 – Equation constant c2, a float in the range -30. to 30.

	
INPUT = [u'x1', u'y1', u'r', u'theta', u'adc1', u'adc2', u'adc3', u'adc4', u'c1', u'c2', u'0', u'1', u'frequency', u'oscillator', u'x2', u'y2', u'r2', u'theta2']

	

	
class slave.signal_recovery.sr7230.FastBuffer(transport, protocol)

	Bases: slave.core.InstrumentBase

Represents the fast curve buffer command group.

The fast curve buffer is similar to the StandardBuffer. It is
less flexible but allows for the fastest data acquisition rate.

	Variables:	
	length – The length of the fast curve buffer, at most 100000 can be
stored.

	enabled – A boolean flag enabling/disabling the fast curve buffer.

Note

Enabling the fast curve buffer disables the standard curve buffer.

	storage_interval – The storage interval in microseconds. The smallest
value is 1.

	
KEYS = [u'x', u'y', u'demod1', u'adc1', u'adc2', u'x2', u'y2', u'demod2']

	

	
class slave.signal_recovery.sr7230.FrequencyModulation(transport, protocol, option=None)

	Bases: slave.core.InstrumentBase

Represents the frequency modulation commands.

	Variables:	
	center_frequency (float) – The center frequency of the oscillator
frequency modulation. A float in the range 0. to 120e3 (250e3 if 250
kHz option is installed).

	center_voltage (float) – The center voltage of the oscillator frequency
modulation. A float in the range -10 to 10.

	filter (int) – The amplitude modulation filter control. An integer
in the range 0 - 10, where 0 is the widest bandwidth and 10 is the
lowest.

	span_frequency (float) – The oscillator frequency modulation span frequency. A
float in the range 0 up to 60e3 (125e3 if 250kHz option is installed).

	span_voltage (float) – The oscillator frequency modulation span voltage.
A float in the range -10 to 10.

Note

The center frequency must be larger than the span frequency. Invalid
values raise a ValueError.

	
center_frequency

	

	
span_frequency

	

	
class slave.signal_recovery.sr7230.SR7230(transport, option=None)

	Bases: slave.core.InstrumentBase

Represents a Signal Recovery SR7230 lock-in amplifier.

	Parameters:	
	transport – A transport object.

	option – Specifies if an optional card is installed. Valid are None
or ‘250kHz’. This changes some frequency related limits.

Signal Channel

	Variables:	
	current_mode – The current mode, either ‘off’, ‘high bandwidth’ or
‘low noise’.

	voltage_mode – The voltage mode, either ‘test’, ‘A’ , ‘-B’ or ‘A-B’.
The ‘test’ mode corresponds to both inputs grounded.

	demodulator_source – It sets the source of the signal for the second
stage demodulators in dual reference mode. Valid are ‘main’, ‘adc1’
and ‘tandem’.

	value
	description

	‘main’
	The main signal channel adc is used.

	‘adc1’
	The rear pannel auxiliary input adc1 is used as source.

	‘tandem’
	The demodulator 1 X-channel output is used as source.

	fet – The voltage mode input device control. Valid entries are
‘bipolar’ and ‘fet’, where

	‘bipolar’ is a bipolar device with 10kOhm input impedance. It allows
for the lowest possible voltage noise.
Note

It is not possible to use bipolar and ac coupling together.

	‘fet’ 10MOhm input impedance. It is the default setting.

	shield – The input connector shield grounding mode. Valid entries
are ‘ground’ and ‘float’.

	coupling – The input connector coupling, either ‘ac’ or ‘dc’.

	sensitivity – The full-scale sensitivity. The valid entries depend on
the current mode.

	‘off’
	‘high bandwidth’
	‘low noise’

	‘10 nV’
	‘10 fA’
	—

	‘20 nV’
	‘20 fA’
	—

	‘50 nV’
	‘50 fA’
	—

	‘100 nV’
	‘100 fA’
	—

	‘200 nV’
	‘200 fA’
	‘2 fA’

	‘500 nV’
	‘500 fA’
	‘5 fA’

	‘1 uV’
	‘1 pA’
	‘10 fA’

	‘2 uV’
	‘2 pA’
	‘20 fA’

	‘5 uV’
	‘5 pA’
	‘50 fA’

	‘10 uV’
	‘10 pA’
	‘100 fA’

	‘20 uV’
	‘20 pA’
	‘200 fA’

	‘50 uV’
	‘50 pA’
	‘500 fA’

	‘100 uV’
	‘100 pA’
	‘1 pA’

	‘200 uV’
	‘200 pA’
	2 pA’

	‘500 uV’
	‘500 pA’
	‘5 pA’

	‘1 mV’
	‘1 nA’
	‘10 pA’

	‘2 mV’
	‘2 nA’
	‘20 pA’

	‘5 mV’
	‘5 nA’
	‘50 pA’

	‘10 mV’
	‘10 nA’
	‘100 pA’

	‘20 mV’
	‘20 nA’
	‘200 pA’

	‘50 mV’
	‘50 nA’
	‘500 pA’

	‘100 mV’
	‘100 nA’
	‘1 nA’

	‘200 mV’
	‘200 nA’
	‘2 nA’

	‘500 mV’
	‘500 nA’
	‘5 nA’

	‘1 V’
	‘1 uA’
	‘10 nA’

	ac_gain – The gain of the signal channel amplifier. See SR7230.AC_GAIN
for valid values.

	ac_gain_auto – A boolean corresponding to the ac gain automatic mode.
It is False if the ac_gain is under manual control, and True
otherwise.

	line_filter – The line filter configuration.
(<filter>, <frequency>), where

	<filter> Is the filter mode. Valid entries are ‘off’, ‘notch’,
‘double’ or ‘both’.

	<frequency> Is the notch filter center frequency, either ‘60Hz’
or ‘50Hz’.

Reference channel

	Variables:	
	reference_mode – The instruments reference mode. Valid are ‘single’,
‘dual harmonic’ and ‘dual reference’.

	reference – The reference input mode, either ‘internal’, ‘ttl’ or
‘analog’.

	internal_reference_channel – In dual reference mode, selects the
reference channel, which is operated in internal reference mode. Valid
are ‘ch1’ or ‘ch2’.

	harmonic – The reference harmonic mode, an integer between 1 and 128
corresponding to the first to 127 harmonics.

	trigger_output – Set’s the rear pannel trigger output.

	Value
	Description

	‘curve’
	A trigger signal is generated by curve buffer triggering

	‘reference’
	A ttl signal at the reference frequency

	reference_phase – The phase of the reference signal, a float ranging
from -360 to 360 corresponding to the angle in degrees with a resolution
of mili degree.

	reference_frequency – A float corresponding to the reference frequency
in Hz. (read only)

Note

If reference is not ‘internal’ the reference frequency
value is zero if the reference channel is unlocked.

	virtual_reference – A boolean enabling/disabling the virtual reference
mode.

Signal Channel Output Filters

	Variables:	
	noise_measurement – A boolean representing the noise measurement mode.

	noise_buffer_length – The length of the noise buffer in seconds. Valid
are ‘off’, ‘1 s’, ‘2 s’, ‘3 s’ and ‘4 s’.

	time_constant – The filter time constant. See TIME_CONSTANT
for valid values.

Note

If noise_measurement is enabled, only ‘500 us’, ‘1 ms’,
‘2 ms’, ‘5 ms’ and ‘10 ms’ are valid.

	sync – A boolean value, representing the state of the synchronous time
constant mode.

	slope – The output lowpass filter slope in dB/octave, either ‘6 dB’,
‘12 dB’, ‘18 dB’ or ‘24 dB’.

Note

If :attr:¸.noise_measurement` or fastmode is enabled, only
‘6 dB’ and ‘12 dB’ are valid.

Signal Channel Output Amplifiers

	Variables:	
	x_offset – The x-channel output offset control.
(<enabled>, <range>), where

	<enabled> A boolean enabling/disabling the output offset.

	<range> The range of the offset, an integer between -30000 and
30000 corresponding to +/- 300%.

	y_offset – The y-channel output offset control.
(<enabled>, <range>), where

	<enabled> A boolean enabling/disabling the output offset.

	<range> The range of the offset, an integer between -30000 and
30000 corresponding to +/- 300%.

	expand – The expansion control, either ‘off’, ‘x’, ‘y’ or ‘both’.

	fastmode – Enables/disables the fastmode of the output filter. In
normal mode (False), the instruments analog outputs are derived from
the output processor. The update rate is 1 kHz.

In fastmode, the analog outputs are derived directly from the core FPGA
running the demodulator algorithms. This increases the update rate to
1 Mhz for time constants 10 us to 500 ms. It remains at 1 kHz for
longer time constants.

Instrument outputs

	Variables:	
	x – A float representing the X-channel output in either volt or
ampere. (read only)

	y – A float representing the Y-channel output in either volt or
ampere. (read only)

	xy – X and Y-channel output with the following format (<x>, <y>).
(read only)

	r – The signal magnitude, as float. (read only)

	theta – The signal phase, as float. (read only)

	r_theta – The magnitude and the signal phase. (<r>, <theta>).
(read only)

	ratio – The ratio equivalent to X/ADC1. (read only)

	log_ratio – The ratio equivalent to log(X/ADC1). (read only)

	noise – The square root of the noise spectral density measured at the
Y channel output. (read only)

	noise_bandwidth – The noise bandwidth. (read only)

	noise_output – The noise output, the mean absolute value of the Y
channel. (read only)

	equation – The equation configuration, a list of two
Equation instances.

Internal oscillator

	Variables:	
	amplitude – A float between 0. and 5. representing the oscillator
amplitude in V rms.

	amplitude_start – Amplitude sweep start value.

	amplitude_stop – Amplitude sweep end value.

	amplitude_step – Amplitude sweep amplitude step.

	frequency – The oscillator frequency in Hz. Valid entries are 0. to
1.2e5.

	frequency_start – The frequency sweep start value.

	frequency_stop – The frequency sweep stop value.

	frequency_step – The frequency sweep step size and sweep type.
(<step>, <mode>), where

	<step> The step size in Hz.

	<mode> The sweep mode, either ‘log’, ‘linear’ or ‘seek’. In ‘seek’
mode the sweep stops automatically when the signal magnitude exceeds
50% of full scale. It’s most commonly used to set up virtual reference
mode.

	sweep_rate – The frequency and amplitude sweep step rate in time per
step in seconds. Valid entries are 0.001 to 1000. with a resolution of
0.001.

	modulation – The state of the oscillator amplitude/frequency
modulation. Valid are False, ‘amplitude’ and ‘frequency’.

	amplitude_modulation – The amplitude modulation commands, an instance
of AmplitudeModulation.

	frequency_modulation – The frequency modulation commands, an instance
of FrequencyModulation.

Analog Outputs

	Variables:	dac – A sequence of four DAC instances, representing all
four analog outpus.

Digital I/O

	Variables:	digital_ports – The digital port configuration, an instance of
DigitalPort.

Auxiliary Inputs

	Variables:	
	aux – A CommandSequence instance, providing access to all
four analog to digital input channel voltage readings. E.g.:

prints voltage reading of first aux input channel.
print(sr7230.aux[0])

	aux_trigger_mode – The trigger modes of the auxiliary input channels.
Valid are ‘internal’, ‘external’, ‘burst’ and ‘fast burst’

	mode
	description

	‘internal’
	The internal

	‘external’
	The ADC TRIG IN connector is used to trigger readings.

	‘burst’
	Allows sampling rates of 40 kHz, but only ADC1 and ADC2 can
be used.

	‘fast burst’
	Sampling rates up to 200 kHz are possible, but only ADC1
can be used.

Output Data Curve Buffer

	Variables:	
	acquisition_status – The state of the curve acquisition. A tuple
corresponding to (<state>, <sweeps>, <status byte>, <points>), where

	<state> is the curve acquisition state. Possible values are

	Value
	Description

	‘off’
	No curve acquisition in progress.

	‘on’
	Curve acquisition via SR7230.take_data() in
progress.

	‘continuous’
	Curve acquisition via
take_data_continuously() in
progress.

	‘halted’
	Curve acquisition via SR7230.take_data()
in progress but halted.

	‘continuous halted’
	Curve acquisition via
take_data_continuously() in
progress but halted.

	<sweeps> the number of sweeps acquired.

	<status byte> the status byte, see SR7230.status_byte.

	<points> The number of points acquired.

	fast_buffer – An instance of FastBuffer, representing the
fast curve buffer related commands.

	standard_buffer – An instance of FastBuffer, representing the
fast curve buffer related commands.

	buffer_trigger_output – The trigger output generated when buffer
acquisition is running.

	Value
	Description

	‘curve’
	A trigger is generated once per curve.

	‘point’
	A trigger is generated once per point.

	buffer_trigger_output_polarity – The polarity of the trigger output.
Valid are ‘rising’, ‘falling’.

Computer Interfaces

	Variables:	
	baudrate – The baudrate of the rs232 interface. See
BAUDRATE for valid values.

	delimiter – The data delimiter. See DELIMITER for
valid values.

Note

In normal operation, there is no need to change the delimiter
because the communication is handled by the protocol. If the
delimiter is changed, the msg_data_sep and resp_data_sep values
of the protocol must be changed manually.

	status – The status byte. (read only)

	overload_status – The overload status. (read only)

	ip_address – Four integer values representing the ip address. E.g.
169.254.0.10 would translate to a tuple (169, 254, 0, 10)

Note

Setting the IP address sets the gateway and subnet mask to a default
value. If non default values are required set them afterwards.

	subnet_mask – A tuple of four ints representing the subnet mask.

	gateway_address – A tuple of four ints representing the gateway address.

Instrument Identification

	Variables:	
	identification – The model number 7230. (read only)

	version – The firmware version. (read only)

	date – The last calibration date. (read only)

	name – The name of the lock-in amplifier, a string with up 64 chars.

Dual Mode

In dual reference mode, two demodulator stages are used instead of one. The
standard commands such as x, y or sensitivity won’t work. To access
the parameters of the two stages use the demod
attribute instead. E.g.:

Set lockin into dual reference mode.
sr7230.reference_mode = 'dual'
get x value of first demod stage (zero index based).
x = sr7230.demod[0].x
set the sensitivity of the second demod stage.
sr7230.demod[1].sensitivity = '50 nV'

	Variables:	demod – A tuple of two Demodulator instances. The first with
index 0 represents the first demodulator, the second item with index 1
represents the second demodulator.

	
AC_GAIN = [u'0 dB', u'6 dB', u'12 dB', u'18 dB', u'24 dB', u'30 dB', u'36 dB', u'42 dB', u'48 dB', u'54 dB', u'60 dB', u'66 dB', u'72 dB', u'78 dB', u'84 dB', u'90 dB']

	

	
BAUDRATE = [75, 110, 134.5, 150, 300, 600, 1200, 1800, 2000, 2400, 4800, 9600, 19200, 38400]

	

	
DELIMITER = [u'\r', u' ', u'!', u'"', u'#', u'$', u'%', u'&', u"'", u'(', u')', u'*', u'+', u',', u'-', u'.', u'/', u'0', u'1', u'2', u'3', u'4', u'5', u'6', u'7', u'8', u'9', u':', u';', u'<', u'=', u'>', u'?', u'@', u'A', u'B', u'C', u'D', u'E', u'F', u'G', u'H', u'I', u'J', u'K', u'L', u'M', u'N', u'O', u'P', u'Q', u'R', u'S', u'T', u'U', u'V', u'W', u'X', u'Y', u'Z', u'[', u'\\', u']', u'^', u'_', u'`', u'a', u'b', u'c', u'd', u'e', u'f', u'g', u'h', u'i', u'j', u'k', u'l', u'm', u'n', u'o', u'p', u'q', u'r', u's', u't', u'u', u'v', u'w', u'x', u'y', u'z', u'{', u'|', u'}']

	

	
OVERLOAD_BYTE = {0: u'x1', 1: u'y1', 2: u'x2', 3: u'y2', 4: u'adc1', 5: u'adc2', 6: u'adc3', 7: u'adc4'}

	

	
SENSITIVITY_CURRENT_HIGHBW = [u'10 fA', u'20 fA', u'50 fA', u'100 fA', u'200 fA', u'500 fA', u'1 pA', u'2 pA', u'5 pA', u'10 pA', u'20 pA', u'50 pA', u'100 pA', u'200 pA', u'500 pA', u'1 nA', u'2 nA', u'5 nA', u'10 nA', u'20 nA', u'50 nA', u'100 nA', u'200 nA', u'500 nA', u'1 uA']

	

	
SENSITIVITY_CURRENT_LOWNOISE = [u'2 fA', u'5 fA', u'10 fA', u'20 fA', u'50 fA', u'100 fA', u'200 fA', u'500 fA', u'1 pA', u'2 pA', u'5 pA', u'10 pA', u'20 pA', u'50 pA', u'100 pA', u'200 pA', u'500 pA', u'1 nA', u'2 nA', u'5 nA', u'10 nA']

	

	
SENSITIVITY_VOLTAGE = [u'10 nV', u'20 nV', u'50 nV', u'100 nV', u'200 nV', u'500 nV', u'1 uV', u'2 uV', u'5 uV', u'10 uV', u'20 uV', u'50 uV', u'100 uV', u'200 uV', u'500 uV', u'1 mV', u'2 mV', u'5 mV', u'10 mV', u'20 mV', u'50 mV', u'100 mV', u'200 mV', u'500 mV', u'1 V']

	

	
STATUS_BYTE = {0: u'command complete', 1: u'invalid command', 2: u'command parameter error', 3: u'reference unlock', 4: u'output overload', 5: u'new adc', 6: u'input overload', 7: u'data available'}

	

	
TIME_CONSTANT = [u'10 us', u'20 us', u'50 us', u'100 us', u'200 us', u'500 us', u'1 ms', u'2 ms', u'5 ms', u'10 ms', u'20 ms', u'50 ms', u'100 ms', u'200 ms', u'500 ms', u'1 s', u'2 s', u'5 s', u'10 s', u'20 s', u'50 s', u'100 s', u'200 s', u'500 s', u'1 ks', u'2 ks', u'5 ks', u'10 ks', u'20 ks', u'50 ks', u'100 ks']

	

	
auto_measure()

	Triggers the auto measure mode.

	
auto_offset()

	Triggers the auto offset mode.

	
auto_phase()

	Triggers the auto phase mode.

	
auto_sensitivity()

	Triggers the auto sensitivity mode.

When the auto sensitivity mode is triggered, the SR7225 adjustes the
sensitivity so that the signal magnitude lies in between 30% and 90%
of the full scale sensitivity.

	
clear_buffer()

	Initialises the curve buffer and related status variables.

	
date

	

	
factory_defaults(full=False)

	Resets the device to factory defaults.

	Parameters:	full – If full is True, all settings are returned to factory
defaults, otherwise the communication settings are not changed.

	
halt()

	Halts curve acquisition in progress.

If a sweep is linked to curve buffer acquisition it is halted as well.

	
i = 125

	

	
link_afsweep()

	Links dual amplitude/frequency sweep to curve buffer acquisition.

	
link_asweep()

	Links amplitude sweep to curve buffer acquisition.

	
link_fsweep()

	Links frequency sweep to curve buffer acquisition.

	
lock_ip()

	Locks the ip address.

Only commands of the locked ip are accepted.

	
pause_afsweep()

	Pauses dual frequency/amplitude sweep.

	
pause_asweep()

	Pauses amplitude sweep.

	
pause_fsweep()

	Pauses frequency sweep.

	
sensitivity

	

	
start_afsweep()

	Starts a frequency and amplitude sweep.

	
start_asweep(start=None, stop=None, step=None)

	Starts a amplitude sweep.

	Parameters:	
	start – Sets the start frequency.

	stop – Sets the target frequency.

	step – Sets the frequency step.

	
start_fsweep(start=None, stop=None, step=None)

	Starts a frequency sweep.

	Parameters:	
	start – Sets the start frequency.

	stop – Sets the target frequency.

	step – Sets the frequency step.

	
stop()

	Stops the current sweep.

	
take_data()

	Starts data acquisition.

	
take_data_continuously(trigger, stop)

	Starts continuous data acquisition.

	Parameters:	
	trigger – The trigger condition, either ‘curve’ or ‘point’.

	Value
	Description

	‘curve’
	Each trigger signal starts a curve acquisition. The max
trigger frequency in this mode is 1 kHz.

	‘point’
	A point is stored for each trigger signal.

	edge – Defines wether a ‘rising’ or ‘falling’ edge is interpreted
as a trigger signal.

	stop – The stop condition. Valid are ‘buffer’, ‘halt’,
‘rising’ and ‘falling’.

	Value
	Description

	‘buffer’
	Data acquisition stops when the number of point
specified in length is acquired.

	‘halt’
	Data acquisition stops when the halt command is issued.

	‘rising’
	Data acquisition stops on the rising edge of a trigger
signal.

	‘falling’
	Data acquisition stops on the falling edge of a trigger
signal.

Note

The internal buffer is used as a circular buffer.

	
take_data_triggered(trigger, edge, stop)

	Configures data acquisition to start on various trigger conditions.

	Parameters:	
	trigger – The trigger condition, either ‘curve’ or ‘point’.

	Value
	Description

	‘curve’
	Each trigger signal starts a curve acquisition. The max
trigger frequency in this mode is 1 kHz.

	‘point’
	A point is stored for each trigger signal.

	edge – Defines wether a ‘rising’ or ‘falling’ edge is interpreted
as a trigger signal.

	stop – The stop condition. Valid are ‘buffer’, ‘halt’,
‘rising’ and ‘falling’.

	Value
	Description

	‘buffer’
	Data acquisition stops when the number of point
specified in length is acquired.

	‘halt’
	Data acquisition stops when the halt command is issued.

	‘trigger’
	Takes data for the period of a trigger event. If edge is
‘rising’ then teh acquisition starts on the rising edge of
the trigger signal and stops on the falling edge and vice
versa

	
unlock_ip()

	Unlocks the ip address.

	
update_correction()

	Updates all frequency-dependant gain and phase correction
parameters.

	
class slave.signal_recovery.sr7230.StandardBuffer(transport, protocol)

	Bases: slave.core.InstrumentBase

Represents the standard buffer command group.

	Variables:	
	length – The size of the standard curve buffer is 100000 points. These
are shared equally between all define curves.

	enabled – A boolean flag enabling/disabling the fast curve buffer.

Note

Enabling the fast curve buffer disables the standard curve buffer.

	storage_interval – The storage interval in microseconds. The smallest
value is 1000.

	define – Selects which curves should be stored. See
KEYS for allowed values.

	
KEYS = [u'x', u'y', u'r', u'theta', u'sensitivity', u'noise', u'ratio', u'log ratio', u'adc1', u'adc2', u'adc3', u'adc4', u'dac1', u'dac2', u'event', u'frequency', u'frequency', u'x2', u'y2', u'r2', u'theta2', u'sensitivity2']

	

	
define

	

	
event(value)

	Set an event marker.

If the event curve is defined and data acquisition is running, a call to
event stores the value in the event curve.

	
length

	

srs Module

The sr830 module implements an interface for the Stanford Research Systems
SR830.

The SR830 lock in amplifier is an IEEE Std. 488-2 1987 compliant device.

	
class slave.srs.sr830.SR830(transport)

	Bases: slave.core.InstrumentBase

Stanford Research SR830 Lock-In Amplifier instrument class.

The SR830 provides a simple, yet powerful interface to a Stanford Research
SR830 lock-in amplifier.

E.g.:

import visa
from slave.sr830 import SR830
create a transport with a sr830 instrument via GPIB on channel 8
transport = visa.Instrument('GPIB::8')
instantiate the lockin interface.
lockin = SR830(transport)
execute a simple measurement
for i in range(100):
 print 'X:', lockin.x
 time.sleep(1)

	
alarm = None

	Sets or queries the alarm state.

	
amplitude = None

	Sets or queries the amplitude of the sine output.

	
auto_gain()

	Executes the auto gain command.

	
auto_offset(signal)

	Executes the auto offset command for the selected signal.

	Parameters:	i – Can either be ‘X’, ‘Y’ or ‘R’.

	
auto_phase()

	Executes the auto phase command.

	
auto_reserve()

	Executes the auto reserve command.

	
ch1 = None

	Reads the value of channel 1.

	
ch1_display = None

	Set or query the channel 1 display settings.

	
ch1_output = None

	Sets the channel1 output.

	
ch2 = None

	Reads the value of channel 2.

	
ch2_display = None

	Set or query the channel 2 display settings.

	
ch2_output = None

	Sets the channel2 output.

	
clear()

	Clears all status registers.

	
clear_on_poweron = None

	Enables or disables the clearing of the status registers on poweron.

	
coupling = None

	Sets or queries the input coupling.

	
data_points = None

	Queries the number of data points stored in the internal buffer.

	
delayed_start()

	Starts data storage after a delay of 0.5 sec.

	
fast_mode = None

	Sets or queries the data transfer mode.
.. note:

Do not use :class:`~SR830.start() to execute the scan, use
:class:`~SR830.delayed_start instead.

	
filter = None

	Sets or queries the input line notch filter status.

	
frequency = None

	Sets or queries the internal reference frequency.

	
ground = None

	Sets or queries the input shield grounding.

	
harmonic = None

	Sets or queries the detection harmonic.

	
idn = None

	Queries the device identification string

	
input = None

	Sets or queries the input configuration.

	
key_click = None

	Sets or queries the key click state.

	
output_interface = None

	Sets or queries the output interface.

	
overide_remote = None

	Sets the remote mode override.

	
pause()

	Pauses data storage.

	
phase = None

	Sets and queries the reference phase

	
r = None

	Reads the value of r.

	
r_offset_and_expand = None

	Sets or queries the x value offset and expand

	
recall_setup(id)

	Recalls the lock-in setup from the setup buffer.

	Parameters:	id – Represents the buffer id (0 < buffer < 10). If no
lock-in setup is stored under this id, recalling results in
an error in the hardware.

	
reference = None

	Sets or queries the reference source

	
reference_trigger = None

	Sets or triggers the reference trigger mode.

	
reserve = None

	Sets or queries the dynamic reserve.

	
reset_buffer()

	Resets internal data buffers.

	
reset_configuration()

	Resets the SR830 to it’s default configuration.

	
save_setup(id)

	Saves the lock-in setup in the setup buffer.

	
send_mode = None

	The send command sets or queries the end of buffer mode.
.. note:

If loop mode is used, the data storage should be paused to avoid
confusion about which point is the most recent.

	
sensitivity = None

	Sets or queries the sensitivity in units of volt.

	
slope = None

	Sets or queries the low-pass filter slope.

	
snap(*args)

	Records up to 6 parameters at a time.

	Parameters:	args – Specifies the values to record. Valid ones are ‘X’, ‘Y’,
‘R’, ‘theta’, ‘AuxIn1’, ‘AuxIn2’, ‘AuxIn3’, ‘AuxIn4’, ‘Ref’, ‘CH1’
and ‘CH2’. If none are given ‘X’ and ‘Y’ are used.

	
start()

	Starts or resumes data storage.

	
state = None

	Queries or sets the state of the frontpanel.

	
sync = None

	Sets or queries the synchronous filtering mode.

	
theta = None

	Reads the value of theta.

	
time_constant = None

	Sets or queries the time constant in seconds.

	
trace(buffer, start, length=1)

	Reads the points stored in the channel buffer.

	Parameters:	
	buffer – Selects the channel buffer (either 1 or 2).

	start – Selects the bin where the reading starts.

	length – The number of bins to read.

	
trigger()

	Emits a trigger event.

	
x = None

	Reads the value of x.

	
x_offset_and_expand = None

	Sets or queries the x value offset and expand.

	
y = None

	Reads the value of y.

	
y_offset_and_expand = None

	Sets or queries the x value offset and expand.

	
class slave.srs.sr850.Cursor(transport, protocol)

	Bases: slave.core.InstrumentBase

Represents the SR850 cursor of the active display.

	Parameters:	
	transport – A transport object.

	protocol – A protocol object.

Note

The cursor commands are only effective if the active display is a chart
display.

	Variables:	
	seek_mode – The cursor seek mode, valid are ‘max’, ‘min’ and ‘mean’.

	width – The cursor width, valid are ‘off’, ‘narrow’, ‘wide’ and
‘spot’.

	vertical_division – The vertical division of the active display. Valid
are 8, 10 or None.

	control_mode – The cursor control mode. Valid are ‘linked’,
‘separate’.

	readout_mode – The cursor readout mode. Valid are ‘delay’, ‘bin’,
‘fsweep’ and ‘time’.

	bin – The cursor bin position of the active display. It represents the
center of the cursor region. This is not the same as the cursor readout
position. To get the actual cursor location, use Display.cursor.

	
move()

	Moves the cursor to the max or min position of the data, depending
on the seek mode.

	
next_mark()

	Moves the cursor to the next mark to the right.

	
previous_mark()

	Moves the cursor to the next mark to the left.

	
class slave.srs.sr850.Display(transport, protocol, idx)

	Bases: slave.core.InstrumentBase

Represents a SR850 display.

	Parameters:	
	transport – A transport object.

	protocol – A protocol object.

	idx – The display id.

Note

The SR850 will generate an error if one tries to set a parameter of an
invisible display.

	Variables:	
	type – The display type, either ‘polar’, ‘blank’, ‘bar’ or ‘chart’.

	trace – The trace number of the displayed trace.

	range – The displayed range, a float between 10^-18 and 10^18.

Note

Only bar and chart displays are affected.

	offset – The display center value in units of the trace in the range
10^-12 to 10^12.

	horizontal_scale – The display’s horizontal scale. Valid are ‘2 ms’,
‘5 ms’, ‘10 ms’, ‘20 ms’, ‘50 ms’, ‘0.1 s’, ‘0.2 s’, ‘0.5 s’, ‘1 s’,
‘2 s’, ‘5 s’, ‘10 s’, ‘20 s’, ‘50 s’, ‘1 min’, ‘100 s’, ‘2 min’,
‘200 s’, ‘5 min’, ‘500 s’, ‘10 min’, ‘1 ks’, ‘20 min’, ‘2 ks’, ‘1 h’,
‘10 ks’, ‘3 h’, ‘20 ks’, ‘50 ks’, ‘100 ks’ and ‘200 ks’.

	bin – The bin number at the right edge of the chart display.
(read only)

Note

The selected display must be a chart display.

	cursor – The cursor position of this display (read only), represented
by the tuple (<horizontal>, <vertical>), where

	<horizontal> is the horizontal position in bin, delay, time or
sweep frequency.

	<vertical> is the vertical position.

	
class slave.srs.sr850.FitParameters(transport, protocol)

	Bases: slave.core.InstrumentBase

The calculated fit parameters.

	Parameters:	
	transport – A transport object.

	protocol – A protocol object.

The meaning of the fit parameters depends on the fit function used to
obtain them. These are

	Function
	Definition

line y = a + b * (t - t0)
exp y = a * exp(-(t - t0) / b) + c
gauss y = a * exp(0.5 * (t / b)^2) + c
======== ===============================

	Variables:	
	a – The a parameter.

	Function
	Meaning

	linear
	Vertical offset in trace units.

	exp
	Amplitude in trace units.

	gauss
	Amplitude in trace units.

	b – The b parameter.

	Function
	Meaning

	linear
	Slope in trace units per second.

	exp
	Time constant in time.

	gauss
	Line width in time.

	c – The c parameter.

	Function
	Meaning

	linear
	Unused.

	exp
	Vertical offset in trace units.

	gauss
	Vertical offset in trace units.

	t0 – The t0 parameter.

	Function
	Meaning

	linear
	Horizontal offset in time.

	exp
	Horizontal offset in time.

	gauss
	Peak center position in time.

	
class slave.srs.sr850.Mark(transport, protocol, idx)

	Bases: slave.core.InstrumentBase

A SR850 mark.

	Parameters:	
	transport – A transport object.

	protocol – A protocol object.

	idx – The mark index.

	
active

	The active state of the mark.

	Returns:	True if the mark is active, False otherwise.

	
bin

	The bin index of this mark.

	Returns:	An integer bin index or None if the mark is inactive.

	
label

	The label string of the mark.

Note

The label should not contain any whitespace charactes.

	
class slave.srs.sr850.MarkList(transport, protocol)

	Bases: slave.core.InstrumentBase

A sequence like structure holding the eight SR850 marks.

	
active()

	The indices of the active marks.

	
class slave.srs.sr850.Output(transport, protocol, idx)

	Bases: slave.core.InstrumentBase

Represents a SR850 analog output.

	Parameters:	
	transport – A transport object.

	protocol – A protocol object.

	idx – The output id.

	Variables:	
	mode – The analog output mode. Valid are ‘fixed’, ‘log’ and ‘linear’.

	voltage – The output voltage in volt, in the range -10.5 to 10.5.

	limits – The output voltage limits and offset, represented by the
following tuple (<start>, <stop>, <offset>), where

	<start> is the start value of the sweep. A float between 1e-3 and
21.

	<stop> is the stop value of the sweep. A float between 1e-3 and 21.

	<offset> is the sweep offset value. A float between -10.5 and 10.5.

Note

If the output is in fixed mode, setting the limits will generate a
lock-in internal error.

	
class slave.srs.sr850.SR850(transport)

	Bases: slave.iec60488.IEC60488, slave.iec60488.PowerOn

A Stanford Research SR850 lock-in amplifier.

	Parameters:	transport – A transport object.

Reference and Phase Commands

	Variables:	
	phase – The reference phase shift. A float between -360. and
719.999 in degree.

	reference_mode – The reference source mode, either ‘internal’, ‘sweep’
or ‘external’.

	frequency – The reference frequency in Hz. A float between 0.001 and
102000.

Note

For harmonics greater than 1, the sr850 limits the max frequency to
102kHz / harmonic.

	frequency_sweep – The type of the frequency sweep, either ‘linear’ or
‘log’, when in ‘internal’ reference_mode.

	start_frequency – The start frequency of the internal frequency sweep
mode. A float in the range 0.001 to 102000.

	stop_frequency – The stop frequency of the internal frequency sweep
mode. A float in the range 0.001 to 102000.

	reference_slope – The reference slope in the external mode. Valid are:

	‘sine’
	sine zero crossing

	‘rising’
	TTL rising edge

	‘falling’
	TTL falling edge

	harmonic – The detection harmonic, an integer between 1 and 32767.

	amplitude – The amplitude of the sine output in volts. Valid entries
are floats in the range 0.004 to 5.0 with a resolution of 0.002.

Reference and Phase Commands

	Variables:	
	input – The input configuration, either ‘A’, ‘A-B’ or ‘I’.

	input_gain – The conversion gain of the current input. Valid are
‘1 MOhm’ and ‘100 MOhm’.

	ground – The input grounding, either ‘float’ or ‘ground’.

	coupling – The input coupling, either ‘AC’ or ‘DC’.

	filter – The input line filter configuration. Valid are ‘unfiltered’,
‘notch’, ‘2xnotch’ and ‘both’.

	sensitivity – The input sensitivity in volt or microamps. Valid are
2e-9, 5e-9, 10e-9, 20e-9, 50e-9, 100e-9, 200e-9, 500e-9, 1e-6, 2e-6,
5e-6, 10e-6, 20e-6, 50e-6, 100e-6, 200e-6, 500e-6, 1e-3, 2e-3, 5e-3,
10e-3, 20e-3, 50e-3, 100e-3, 200e-3, 500e-3, and 1.

	reserve_mode – The reserve mode configuration. Valid entries are
‘max’, ‘manual’ and ‘min’.

	reserve – The dynamic reserve. An Integer between 0 and 5 where 0 is
the minimal reserve available.

	time_constant – The time constant in seconds. Valid are 10e-6, 30e-6,
100e-6, 300e-6, 1e-3, 3e-3, 10e-3, 30e-3, 100e-3, 300e-3, 1., 3., 10,
30, 100, 300, 1e3, 3e3, 10e3, and 30e3.

	filter_slope – The lowpass filter slope in db/oct. Valid are 6, 12, 18
and 24.

	sync_filter – The state of the syncronous filtering, either True or
False.

Note

Syncronous filtering is only vailable if the detection frequency is
below 200Hz

Output and Offset Commands

	Variables:	
	ch1_display – The channel 1 frontpanel output source. Valid are ‘x’,
‘r’, ‘theta’, ‘trace1’, ‘trace2’, ‘trace3’ and ‘trace4’.

	ch2_display – The channel 2 frontpanel output source. Valid are ‘y’,
‘r’, ‘theta’, ‘trace1’, ‘trace2’, ‘trace3’ and ‘trace4’.

	x_offset_and_expand – The output offset and expand of the x quantity.
A tuple (<offset>, <expand>), where

	<offset> the offset in percent, in the range -105.0 to 105.0.

	<expand> the expand in the range 1 to 256.

	y_offset_and_expand – The output offset and expand of the y quantity.
A tuple (<offset>, <expand>), where

	<offset> the offset in percent, in the range -105.0 to 105.0.

	<expand> the expand in the range 1 to 256.

	r_offset_and_expand – The output offset and expand of the r quantity.
A tuple (<offset>, <expand>), where

	<offset> the offset in percent, in the range -105.0 to 105.0.

	<expand> the expand in the range 1 to 256.

Trace and Scan Commands

	Variables:	
	traces – A sequence of four Trace instances.

	scan_sample_rate – The scan sample rate, valid are 62.5e-3, 125e-3,
250e-3, 500e-3, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 in Hz or
‘trigger’.

	scan_length – The scan length in seconds. It well be set to the
closest possible time. The minimal scan time is 1.0 seconds. The
maximal scan time is determined by the scanning sample rate and the
number of stored traces.

	Traces
	Buffer Size

	1
	64000

	2
	32000

	3
	48000

	4
	16000

	scan_mode – The scan mode, valid are ‘shot’ or ‘loop’.

Display and Scale Commands

	Variables:	
	active_display – Sets the active display. Valid are ‘full’, ‘top’
or ‘bottom’.

	selected_display – Selects the active display, either ‘top’ or
‘bottom’. If the active display ‘full’ it is already selected.

	screen_format – Selects the screen format. Valid are

	‘single’, The complete screen is used.

	‘dual’, A up/down split view is used.

	monitor_display – The monitor display mode, valid are ‘settings’ and
‘input/output’.

	full_display – An instance of Display, representing the
full display.

	top_display – An instance of Display, representing the
top display.

	bottom_display – An instance of Display, representing the
bottom display.

Cursor Commands

	Variables:	cursor – The cursor of the active display, an instance of
Cursor.

Aux Input and Output Commands

	Variables:	
	aux_input – A sequence of four read only items representing the aux
inputs in volts.

	aux_input – A sequence of four Output instances,
representing the analog outputs.

	start_on_trigger (bool) – If start on trigger is True, a trigger signal will
start the scan.

	Variables:	marks – An instance of MarkList, a sequence like structure
giving access to the SR850 marks.

Math Commands

	Variables:	
	math_operation – Sets the math operation used by the
calculate() operation. Valid are ‘+’, ‘-‘, ‘*’, ‘/’,
‘sin’, ‘cos’, ‘tan’, ‘sqrt’, ‘^2’, ‘log’ and ‘10^x’.

	math_argument_type – The argument type used in the calculate()
method, either ‘trace’ or ‘constant’.

	math_constant (float) – Specifies the constant value used by the
calculate() operation if the
math_argument_type is set to ‘constant’.

	math_trace_argument – Specifies the trace number used by the
calculate() operation if the
math_argument_type is set to ‘trace’.

	fit_function – The function used to fit the data, either ‘linear’,
‘exp’ or ‘gauss’.

	fit_params – An instance of FitParameter used to access the
fit parameters.

	statistics – An instance of Statistics used to access the
results of the statistics calculation.

Store and Recall File Commands

	Variables:	filename – The active filename.

Warning

The SR850 supports filenames with up to eight characters and an
optional extension with up to three characters. The filename
must be in the DOS format. Slave does not validate this yet.

Setup Commands

	Variables:	
	interface – The communication interface in use, either ‘rs232’ or
‘gpib’.

	overide_remote (bool) – The gpib remote overide mode.

	key_click (bool) – Enables/disables the key click.

	alarm (bool) – Enables/disables the alarm.

	hours (int) – The hours of the internal clock. An integer in the range
0 - 23.

	minutes (int) – The minutes of the internal clock. An integer in the
range 0 - 59.

	seconds (int) – The seconds of the internal clock. An integer in the
range 0 - 59.

	days (int) – The days of the internal clock. An integer in the range
1 - 31.

	month (int) – The month of the internal clock. An integer in the range
1 - 12.

	years (int) – The year of the internal clock. An integer in the range
0 - 99.

	plotter_mode – The plotter mode, either ‘rs232’ or ‘gpib’.

	plotter_baud_rate – The rs232 plotter baud rate.

	plotter_address – The gpib plotter address, an integer between 0 and
30.

	plotting_speed – The plotting speed mode, either ‘fast’ or ‘slow’.

	trace_pen_number (int) – The trace pen number in the range 1 to 6.

	grid_pen_number (int) – The grid pen number in the range 1 to 6.

	alphanumeric_pen_number (int) – The alphanumeric pen number in the range
1 to 6.

	cursor_pen_number (int) – The cursor pen number in the range 1 to 6.

	printer – The printer type. Valid are ‘epson’, ‘hp’ and ‘file’.

Data Transfer Commands

	Variables:	
	x (float) – The in-phase signal in volt (read only).

	y (float) – The out-of-phase signal in volt (read only).

	r (float) – The amplitude signal in volt (read only).

	theta (float) – The in-phase signal in degree (read only).

	fast_mode – The fast mode. When enabled, data is automatically
transmitted over the gpib interface. Valid are ‘off’, ‘dos’ or
‘windows’.

Note

Use SR850.start() with delay=True to start the scan.

Warning

When enabled, the user is responsible for reading the transmitted
values himself.

Interface Commands

	Variables:	access – The frontpanel access mode.

	Value
	Description

	‘local’
	Frontpanel operation is allowed.

	‘remote’
	Frontpanel operation is locked out except the HELP key.
It returns the lock-in into the local state.

	‘lockout’
	All frontpanel operation is locked out.

Status Reporting Commands

	Variables:	
	status – The status byte register, a dictionary with the following
entries

	Key
	Description

	SCN
	No scan in progress.

	IFC
	No command execution in progress.

	ERR
	An enabled bit in the error status byte has been set.

	LIA
	An enabled bit in the LIA status byte has been set.

	MAV
	The message available byte.

	ESB
	An enabled bit in the event status byte has been set.

	SRQ
	A service request has occured.

	event_status – The event status register, a dictionairy with the
following keys:

	Key
	Description

	‘INP’
	An input queue overflow occured.

	‘QRY’
	An output queue overflow occured.

	‘EXE’
	A command execution error occured.

	‘CMD’
	Received an illegal command.

	‘URQ’
	A key press or knob rotation occured.

	‘PON’
	Set by power on.

If any bit is True and enabled, the ‘ESB’ bit in the
status is set to True.

	event_status_enable – The event status enable register. It has the same
keys as SR850.event_status.

	error_status – The event status register, a dictionairy with the
following keys

	Key
	Description

	‘print/plot error’
	A printing/plotting error occured.

	‘backup error’
	Battery backup failed.

	‘ram error’
	Ram memory test failed.

	‘disk error’
	A disk or file operation failed.

	‘rom error’
	Rom memory test failed.

	‘gpib error’
	GPIb fast data transfer aborted.

	‘dsp error’
	DSP test failed.

	‘math error’
	Internal math error occured.

If any bit is True and enabled, the ‘ERR’ bit in the
status is set to True.

	error_status_enable – The error status enable register. It has the same
keys as SR850.error_status.

	lia_status – The LIA status register, a dictionairy with the following
keys

	Key
	Description

	‘input overload’
	An input or reserve overload occured.

	‘filter overload’
	A filter overload occured.

	‘output overload’
	A output overload occured.

	‘reference unlock’
	A reference unlock is detected.

	‘detection freq change’
	The detection frequency changed its range.

	‘time constant change’
	The time constant changed indirectly, either
by changing the frequency range, dynamic
reserve or filter slope.

	‘triggered’
	A trigger event occured.

	‘plot’
	Completed a plot.

	
LIA_BYTE = {0: u'input overload', 1: u'filter overload', 2: u'output overload', 3: u'reference unlock', 4: u'detection freq change', 5: u'time constant change', 6: u'triggered', 7: u'plot'}

	

	
auto_gain()

	Performs a auto gain action.

	
auto_offset(quantity)

	Automatically offsets the given quantity.

	Parameters:	quantity – The quantity to offset, either ‘x’, ‘y’ or ‘r’

	
auto_phase()

	Automatically selects the best matching phase.

	
auto_reserve()

	Automatically selects the best dynamic reserve.

	
auto_scale()

	Autoscales the active display.

Note

Just Bar and Chart displays are affected.

	
calculate(operation=None, trace=None, constant=None, type=None)

	Starts the calculation.

The calculation operates on the trace graphed in the active display.
The math operation is defined by the math_operation,
the second argument by the math_argument_type.

For convenience, the operation and the second argument, can be
specified via the parameters

	Parameters:	
	operation – Set’s the math operation if not None. See
math_operation for details.

	trace – If the trace argument is used, it sets the
math_trace_argument to it and sets the
math_argument_type to ‘trace’

	constant – If constant is not None, the
math_argument_type is set to ‘constant’

	type – If type is not None, the math_argument_type is
set to this value.

E.g. instead of:

lockin.math_operation = '*'
lockin.math_argument_type = 'constant'
lockin.math_constant = 1.337
lockin.calculate()

one can write:

lockin.calculate(operation='*', constant=1.337)

Note

Do not use trace, constant and type together.

Note

The calculation takes some time. Check the status byte to see when
the operation is done. A running scan will be paused until the
operation is complete.

Warning

The SR850 will generate an error if the active display trace is not
stored when the command is executed.

	
calculate_statistics(start, stop)

	Starts the statistics calculation.

	Parameters:	
	start – The left limit of the time window in percent.

	stop – The right limit of the time window in percent.

Note

The calculation takes some time. Check the status byte to see when
the operation is done. A running scan will be paused until the
operation is complete.

Warning

The SR850 will generate an error if the active display trace is not
stored when the command is executed.

	
delete_mark()

	Deletes the nearest mark to the left.

	
fit(range, function=None)

	Fits a function to the active display’s data trace within a
specified range of the time window.

E.g.:

Fit's a gaussian to the first 30% of the time window.
lockin.fit(range=(0, 30), function='gauss')

	Parameters:	
	start – The left limit of the time window in percent.

	stop – The right limit of the time window in percent.

	function – The function used to fit the data, either ‘line’,
‘exp’, ‘gauss’ or None, the default. The configured fit function is
left unchanged if function is None.

Note

Fitting takes some time. Check the status byte to see when the
operation is done. A running scan will be paused until the
fitting is complete.

Warning

The SR850 will generate an error if the active display trace is not
stored when the fit command is executed.

	
pause()

	Pauses a scan and all sweeps in progress.

	
place_mark()

	Places a mark in the data buffer at the next sample.

Note

This has no effect if no scan is running.

	
plot_all()

	Generates a plot of all data displays.

	
plot_cursors()

	Generates a plot of the enabled cursors.

	
plot_trace()

	Generates a plot of the data trace.

	
print_screen()

	Prints the screen display with an attached printer.

	
recall(mode=u'all')

	Recalls from the file specified by filename.

	Parameters:	mode – Specifies the recall mode.

	Value
	Description

	‘all’
	Recalls the active display’s data trace, the trace
definition and the instrument state.

	‘state’
	Recalls the instrument state.

	
reset_scan()

	Resets a scan.

Warning

This will erase the data buffer.

	
save(mode=u'all')

	Saves to the file specified by filename.

	Parameters:	mode – Defines what to save.

	Value
	Description

	‘all’
	Saves the active display’s data trace, the trace
definition and the instrument state.

	‘data’
	Saves the active display’s data trace.

	‘state’
	Saves the instrument state.

	
smooth(window)

	Smooths the active display’s data trace within the time window of
the active chart display.

	Parameters:	window – The smoothing window in points. Valid are 5, 11, 17, 21
and 25.

Note

Smoothing takes some time. Check the status byte to see when the
operation is done. A running scan will be paused until the
smoothing is complete.

Warning

The SR850 will generate an error if the active display trace is not
stored when the smooth command is executed.

	
snap(*args)

	Records multiple values at once.

It takes two to six arguments specifying which values should be
recorded together. Valid arguments are ‘x’, ‘y’, ‘r’, ‘theta’,
‘aux1’, ‘aux2’, ‘aux3’, ‘aux4’, ‘frequency’, ‘trace1’, ‘trace2’,
‘trace3’ and ‘trace4’.

snap is faster since it avoids communication overhead. ‘x’ and ‘y’
are recorded together, as well as ‘r’ and ‘theta’. Between these
pairs, there is a delay of approximately 10 us. ‘aux1’, ‘aux2’, ‘aux3’
and ‘aux4’ have am uncertainty of up to 32 us. It takes at least 40 ms
or a period to calculate the frequency.

E.g.:

lockin.snap('x', 'theta', 'trace3')

	
start(delay=False)

	Starts or resumes a scan.

	Parameters:	delay (bool) – If True, starts the scan with a delay of 0.5
seconds.

Note

It has no effect if the scan is already running.

	
class slave.srs.sr850.Statistics(transport, protocol)

	Bases: slave.core.InstrumentBase

Provides access to the results of the statistics calculation.

	Parameters:	
	transport – A transport object.

	protocol – A protocol object.

	Variables:	
	mean – The mean value.

	standard_deviation – The standart deviation.

	total_data – The sum of all the data points within the range.

	time_delta – The time delta of the range.

	
class slave.srs.sr850.Trace(transport, protocol, idx)

	Bases: slave.core.InstrumentBase

Represents a SR850 trace.

	Parameters:	
	transport – A transport object.

	protocol – A protocol object.

	idx – The trace id.

	Variables:	
	value (float) – The value of the trace (read only).

	traces – A sequence of four traces represented by the following tuple
(<a>, , <c>, <store>) where

	<a>, , <c> define the trace which is calculated as
<a> * / <c>. Each one of them is one of the following
quantities ‘1’, ‘x’, ‘y’, ‘r’, ‘theta’, ‘xn’, ‘yn’, ‘rn’, ‘Al1’,
‘Al2’, ‘Al3’, ‘Al4’, ‘F’, ‘x**2’, ‘y**2’, ‘r**2’, ‘theta**2’,
‘xn**2’, ‘yn**2’, ‘rn**2’, ‘Al1**2’, ‘Al2**2’, ‘Al3**2’, ‘Al4**2’ or
‘F**2’

	<store> is a boolean defining if the trace is stored.

Traces support a subset of the slicing notation. To get the number of
points stored, use the builtin len() method. E.g.:

get point at bin 17.
print trace[17]
get point 17, 18 and 19
print trace[17:20]

If the upper bound exceeds the number of store points, an internal
lock-in error is generated.

types Module

Contains the type factory classes used to load and dump values to string.

The type module contains several type classes used by the Command
class to load and dump values.

Custom Types

The Command class needs an object with three methods:

	load(value)(), takes the value and returns the userspace representation.

	dump(value)(), returns the device space representation of value.

	simulate(), generates a valid user space value.

The abstract Type class implements this interface but most of the
time it is sufficient to inherit from SingleType.

SingleType provides a default implementation, as well as three hooks
to modify the behaviour.

	
class slave.types.Boolean(fmt=None)

	Bases: slave.types.SingleType

Represents a Boolean type.

	Parameters:	fmt – Boolean uses a default format string of ‘{0:d}’. This means
True will get serialized to ‘1’ and False to ‘0’.

	
simulate()

	

	
class slave.types.Enum(*args, **kw)

	Bases: slave.types.Mapping

Represents a one to one mapping to an integer range.

	
load(value)

	

	
class slave.types.Float(min=None, max=None, *args, **kw)

	Bases: slave.types.Range

Represents a floating point type.

	
simulate()

	

	
class slave.types.Integer(min=None, max=None, *args, **kw)

	Bases: slave.types.Range

Represents an integer type.

	
simulate()

	Generates a random integer in the available range.

	
class slave.types.Mapping(mapping)

	Bases: slave.types.SingleType

Represents a one to one mapping of keys and values.

The Mapping represents a one to one mapping of keys and values. The keys
represent the value on the user side, and the values represent the value on
the instrument side, e.g:

type_ = Mapping({'UserValue': 'DeviceValue'})
print type_.load('DeviceValue') # prints 'UserValue'
print type_.dump('UserValue') # prints 'DeviceValue'

Note

	Keys do not need to be strings, they just need to be hashable.

	Values will be converted to strings using str().

	
load(value)

	

	
simulate()

	Returns a randomly chosen key of the mapping.

	
class slave.types.Range(min=None, max=None, *args, **kw)

	Bases: slave.types.SingleType

Abstract base class for types representing ranges.

	Parameters:	
	min – The minimal included value.

	max – The maximal included value.

The Range base class extends the SingleType class with a range
checking validation.

	
class slave.types.Register(mapping)

	Bases: slave.types.SingleType

Represents a binary register, where bits are mapped to a key.

	Parameters:	mapping – The mapping defines the mapping between bits and keys, e.g.

mapping = {
 0: 'First bit',
 1: 'Second bit',
}
reg = Register(mapping)

	
load(value)

	

	
simulate()

	Returns a dictionary representing the mapped register with random
values.

	
class slave.types.Set(*args, **kw)

	Bases: slave.types.Mapping

Represents a one to one mapping of each value to its string representation.

	
class slave.types.SingleType(fmt=None)

	Bases: slave.types.Type

A simple yet easily customizable implementation of the Type interface

	Parameters:	fmt – A format string used in __serialize__() to convert the
value to string. Advanced string formatting syntax is used.
Default: ‘{0}’

The SingleType provides a default implementation of the Type
interface. It provides three hooks to modify it’s behavior.

	__convert__()

	__serialize__()

	__validate__()

Only __convert__() is required. It should convert the value to the
represented python type. Both __serialize__() and
__validate__() have a default implementation, which can be
overwritten to provide custom behaviour.

	
dump(value)

	Dumps the value to string.

	Returns:	Returns the stringified version of the value.

	Raises:	TypeError, ValueError

	
load(value)

	Create the value from a string.

	Returns:	The value loaded from a string.

	Raises:	TypeError

	
class slave.types.String(min=None, max=None, *args, **kw)

	Bases: slave.types.SingleType

Represents a string type.

	Parameters:	
	min – Minimum number of characters required.

	max – Maximum number of characters allowed.

	
simulate()

	Returns a randomly constructed string.

Simulate randomly constructs a string with a length between min and
max. If min is not present, a minimum length of 1 is assumed, if max
is not present a maximum length of 10 is used.

	
class slave.types.Type

	Bases: future.types.newobject.newobject

The type class defines the interface for all type factory classes.

	
dump(value)

	

	
load(value)

	

	
simulate()

	Return a valid, randomly calculated value.

 Copyright 2012, Marco Halder.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Slave

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 slave	

 	
 	
 slave.core	

 	
 	
 slave.cryomagnetics	

 	
 	
 slave.cryomagnetics.mps4g	

 	
 	
 slave.iec60488	

 	
 	
 slave.lakeshore	

 	
 	
 slave.lakeshore.ls340	

 	
 	
 slave.lakeshore.ls370	

 	
 	
 slave.misc	

 	
 	
 slave.protocol	

 	
 	
 slave.quantum_design	

 	
 	
 slave.quantum_design.ppms	

 	
 	
 slave.signal_recovery	

 	
 	
 slave.signal_recovery.sr7225	

 	
 	
 slave.signal_recovery.sr7230	

 	
 	
 slave.srs	

 	
 	
 slave.srs.sr830	

 	
 	
 slave.srs.sr850	

 	
 	
 slave.transport	

 	
 	
 slave.types	

 Copyright 2012, Marco Halder.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Slave

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y

A

 	

 	AC_GAIN (slave.signal_recovery.sr7225.SR7225 attribute)

 	

 	(slave.signal_recovery.sr7230.SR7230 attribute)

 	accept_address() (slave.iec60488.SystemConfiguration method)

 	active (slave.srs.sr850.Mark attribute)

 	active() (slave.srs.sr850.MarkList method)

 	alarm (slave.srs.sr830.SR830 attribute)

 	amplitude (slave.srs.sr830.SR830 attribute)

 	AmplitudeModulation (class in slave.signal_recovery.sr7230)

 	AnalogOutput (class in slave.quantum_design.ppms)

 	append_line() (slave.lakeshore.ls340.Program method)

 	

 	ask() (Transport method)

 	auto_gain() (slave.srs.sr830.SR830 method)

 	

 	(slave.srs.sr850.SR850 method)

 	auto_measure() (slave.signal_recovery.sr7225.SR7225 method)

 	

 	(slave.signal_recovery.sr7230.SR7230 method)

 	auto_offset() (slave.signal_recovery.sr7225.SR7225 method)

 	

 	(slave.signal_recovery.sr7230.Demodulator method)

 	(slave.signal_recovery.sr7230.SR7230 method)

 	(slave.srs.sr830.SR830 method)

 	(slave.srs.sr850.SR850 method)

 	auto_phase() (slave.signal_recovery.sr7225.SR7225 method)

 	

 	(slave.signal_recovery.sr7230.Demodulator method)

 	(slave.signal_recovery.sr7230.SR7230 method)

 	(slave.srs.sr830.SR830 method)

 	(slave.srs.sr850.SR850 method)

 	auto_reserve() (slave.srs.sr830.SR830 method)

 	

 	(slave.srs.sr850.SR850 method)

 	auto_scale() (slave.srs.sr850.SR850 method)

 	auto_sensitivity() (slave.signal_recovery.sr7225.SR7225 method)

 	

 	(slave.signal_recovery.sr7230.Demodulator method)

 	(slave.signal_recovery.sr7230.SR7230 method)

B

 	

 	BAUD_RATE (slave.signal_recovery.sr7225.SR7225 attribute)

 	BAUDRATE (slave.signal_recovery.sr7230.SR7230 attribute)

 	beep() (slave.quantum_design.ppms.PPMS method)

 	

 	bin (slave.srs.sr850.Mark attribute)

 	Boolean (class in slave.types)

 	BridgeChannel (class in slave.quantum_design.ppms)

C

 	

 	calculate() (slave.srs.sr850.SR850 method)

 	calculate_statistics() (slave.srs.sr850.SR850 method)

 	calibrate() (slave.iec60488.Calibration method)

 	Calibration (class in slave.iec60488)

 	call_byte_handler() (slave.protocol.SignalRecovery method)

 	center_frequency (slave.signal_recovery.sr7230.FrequencyModulation attribute)

 	ch1 (slave.srs.sr830.SR830 attribute)

 	ch1_display (slave.srs.sr830.SR830 attribute)

 	ch1_output (slave.srs.sr830.SR830 attribute)

 	ch2 (slave.srs.sr830.SR830 attribute)

 	ch2_display (slave.srs.sr830.SR830 attribute)

 	ch2_output (slave.srs.sr830.SR830 attribute)

 	clear() (slave.iec60488.IEC60488 method)

 	

 	(slave.srs.sr830.SR830 method)

 	

 	clear_alarm() (slave.lakeshore.ls340.LS340 method)

 	

 	(slave.lakeshore.ls370.LS370 method)

 	clear_buffer() (slave.signal_recovery.sr7230.SR7230 method)

 	clear_on_poweron (slave.srs.sr830.SR830 attribute)

 	close() (slave.misc.Measurement method)

 	

 	(slave.transport.LinuxGpib method)

 	(slave.transport.Socket method)

 	Column (class in slave.lakeshore.ls340)

 	Command (class in slave.core)

 	CommandSequence (class in slave.core)

 	complete_operation() (slave.iec60488.IEC60488 method)

 	coupling (slave.srs.sr830.SR830 attribute)

 	create_message() (slave.protocol.IEC60488 method)

 	

 	(slave.protocol.OxfordIsobus method)

 	Cursor (class in slave.srs.sr850)

 	Curve (class in slave.lakeshore.ls340)

 	

 	(class in slave.lakeshore.ls370)

 	CURVE_BUFFER (slave.signal_recovery.sr7225.SR7225 attribute)

D

 	

 	DAC (class in slave.signal_recovery.sr7230)

 	data_points (slave.srs.sr830.SR830 attribute)

 	date (slave.quantum_design.ppms.PPMS attribute)

 	

 	(slave.signal_recovery.sr7230.SR7230 attribute)

 	define (slave.signal_recovery.sr7230.StandardBuffer attribute)

 	define_macro() (slave.iec60488.Macro method)

 	delayed_start() (slave.srs.sr830.SR830 method)

 	delete() (slave.lakeshore.ls340.Curve method)

 	

 	(slave.lakeshore.ls340.Program method)

 	(slave.lakeshore.ls370.Curve method)

 	delete_mark() (slave.srs.sr850.SR850 method)

 	DELIMITER (slave.signal_recovery.sr7230.SR7230 attribute)

 	Demodulator (class in slave.signal_recovery.sr7230)

 	

 	digital_output (slave.quantum_design.ppms.PPMS attribute)

 	DIGITAL_OUTPUT (slave.signal_recovery.sr7230.DigitalPort attribute)

 	DigitalPort (class in slave.signal_recovery.sr7230)

 	disable() (slave.cryomagnetics.mps4g.Shim method)

 	disable_listener() (slave.iec60488.SystemConfiguration method)

 	disable_macro_commands() (slave.iec60488.Macro method)

 	disable_shims() (slave.cryomagnetics.mps4g.MPS4G method)

 	Display (class in slave.lakeshore.ls370)

 	

 	(class in slave.srs.sr850)

 	dump() (slave.types.SingleType method)

 	

 	(slave.types.Type method)

E

 	

 	enable_macro_commands() (slave.iec60488.Macro method)

 	enable_shims() (slave.cryomagnetics.mps4g.MPS4G method)

 	Enum (class in slave.types)

 	Equation (class in slave.signal_recovery.sr7230)

 	

 	ERROR_STATUS (slave.lakeshore.ls340.Heater attribute)

 	event() (slave.signal_recovery.sr7230.StandardBuffer method)

 	external_select (slave.quantum_design.ppms.PPMS attribute)

F

 	

 	factory_defaults() (slave.signal_recovery.sr7230.SR7230 method)

 	fast_mode (slave.srs.sr830.SR830 attribute)

 	FastBuffer (class in slave.signal_recovery.sr7230)

 	field (slave.quantum_design.ppms.PPMS attribute)

 	filter (slave.srs.sr830.SR830 attribute)

 	fit() (slave.srs.sr850.SR850 method)

 	

 	FitParameters (class in slave.srs.sr850)

 	Float (class in slave.signal_recovery.sr7225)

 	

 	(class in slave.types)

 	ForwardSequence (class in slave.misc)

 	frequency (slave.srs.sr830.SR830 attribute)

 	FrequencyModulation (class in slave.signal_recovery.sr7230)

G

 	

 	get_macro() (slave.iec60488.Macro method)

 	

 	ground (slave.srs.sr830.SR830 attribute)

H

 	

 	halt() (slave.signal_recovery.sr7225.SR7225 method)

 	

 	(slave.signal_recovery.sr7230.SR7230 method)

 	harmonic (slave.srs.sr830.SR830 attribute)

 	

 	Heater (class in slave.lakeshore.ls340)

 	

 	(class in slave.lakeshore.ls370)

I

 	

 	i (slave.signal_recovery.sr7230.SR7230 attribute)

 	idn (slave.srs.sr830.SR830 attribute)

 	IEC60488 (class in slave.iec60488)

 	

 	(class in slave.protocol)

 	index() (in module slave.misc)

 	init_curves() (slave.signal_recovery.sr7225.SR7225 method)

 	Input (class in slave.lakeshore.ls340)

 	

 	(class in slave.lakeshore.ls370)

 	

 	INPUT (slave.signal_recovery.sr7230.Equation attribute)

 	input (slave.srs.sr830.SR830 attribute)

 	InputChannel (class in slave.lakeshore.ls340)

 	

 	(class in slave.lakeshore.ls370)

 	InstrumentBase (class in slave.core)

 	Integer (class in slave.types)

K

 	

 	key_click (slave.srs.sr830.SR830 attribute)

 	

 	KEYS (slave.signal_recovery.sr7230.FastBuffer attribute)

 	

 	(slave.signal_recovery.sr7230.StandardBuffer attribute)

L

 	

 	label (slave.srs.sr850.Mark attribute)

 	Learn (class in slave.iec60488)

 	learn() (slave.iec60488.Learn method)

 	length (slave.signal_recovery.sr7230.StandardBuffer attribute)

 	levelmeter() (slave.quantum_design.ppms.PPMS method)

 	LIA_BYTE (slave.srs.sr850.SR850 attribute)

 	line() (slave.lakeshore.ls340.Program method)

 	lines() (slave.lakeshore.ls340.LS340 method)

 	link (slave.quantum_design.ppms.AnalogOutput attribute)

 	link_afsweep() (slave.signal_recovery.sr7230.SR7230 method)

 	link_asweep() (slave.signal_recovery.sr7230.SR7230 method)

 	

 	link_fsweep() (slave.signal_recovery.sr7230.SR7230 method)

 	LinuxGpib (class in slave.transport)

 	load() (slave.types.Enum method)

 	

 	(slave.types.Mapping method)

 	(slave.types.Register method)

 	(slave.types.SingleType method)

 	(slave.types.Type method)

 	local() (slave.cryomagnetics.mps4g.MPS4G method)

 	lock() (slave.signal_recovery.sr7225.SR7225 method)

 	lock_ip() (slave.signal_recovery.sr7230.SR7230 method)

 	locked() (slave.cryomagnetics.mps4g.MPS4G method)

 	Loop (class in slave.lakeshore.ls340)

 	LS340 (class in slave.lakeshore.ls340)

 	LS370 (class in slave.lakeshore.ls370)

M

 	

 	Macro (class in slave.iec60488)

 	macro_labels() (slave.iec60488.Macro method)

 	Mapping (class in slave.types)

 	Mark (class in slave.srs.sr850)

 	MarkList (class in slave.srs.sr850)

 	

 	Measurement (class in slave.misc)

 	move() (slave.quantum_design.ppms.PPMS method)

 	

 	(slave.srs.sr850.Cursor method)

 	move_to_limit() (slave.quantum_design.ppms.PPMS method)

 	MPS4G (class in slave.cryomagnetics.mps4g)

N

 	

 	next_mark() (slave.srs.sr850.Cursor method)

O

 	

 	ObjectIdentification (class in slave.iec60488)

 	open() (slave.misc.Measurement method)

 	

 	(slave.transport.Socket method)

 	Output (class in slave.lakeshore.ls340)

 	

 	(class in slave.lakeshore.ls370)

 	(class in slave.srs.sr850)

 	OUTPUT (slave.signal_recovery.sr7230.DAC attribute)

 	

 	output_interface (slave.srs.sr830.SR830 attribute)

 	overide_remote (slave.srs.sr830.SR830 attribute)

 	OVERLOAD_BYTE (slave.signal_recovery.sr7225.SR7225 attribute)

 	

 	(slave.signal_recovery.sr7230.SR7230 attribute)

 	OxfordIsobus (class in slave.protocol)

P

 	

 	ParallelPoll (class in slave.iec60488)

 	parse_response() (slave.protocol.IEC60488 method)

 	

 	(slave.protocol.OxfordIsobus method)

 	pass_control_back() (slave.iec60488.PassingControl method)

 	PassingControl (class in slave.iec60488)

 	pause() (slave.srs.sr830.SR830 method)

 	

 	(slave.srs.sr850.SR850 method)

 	pause_afsweep() (slave.signal_recovery.sr7230.SR7230 method)

 	pause_asweep() (slave.signal_recovery.sr7230.SR7230 method)

 	pause_fsweep() (slave.signal_recovery.sr7230.SR7230 method)

 	phase (slave.srs.sr830.SR830 attribute)

 	place_mark() (slave.srs.sr850.SR850 method)

 	plot_all() (slave.srs.sr850.SR850 method)

 	

 	plot_cursors() (slave.srs.sr850.SR850 method)

 	plot_trace() (slave.srs.sr850.SR850 method)

 	PowerOn (class in slave.iec60488)

 	PPMS (class in slave.quantum_design.ppms)

 	previous_mark() (slave.srs.sr850.Cursor method)

 	print_screen() (slave.srs.sr850.SR850 method)

 	Program (class in slave.lakeshore.ls340)

 	PROGRAM_STATUS (slave.lakeshore.ls340.LS340 attribute)

 	ProtectedUserData (class in slave.iec60488)

 	Protocol (class in slave.protocol)

 	purge_macros() (slave.iec60488.Macro method)

Q

 	

 	quench_reset() (slave.cryomagnetics.mps4g.MPS4G method)

 	query() (slave.core.Command method)

 	

 	(slave.protocol.IEC60488 method)

 	(slave.protocol.OxfordIsobus method)

 	(slave.protocol.Protocol method)

 	(slave.protocol.SignalRecovery method)

 	

 	query_bytes() (slave.protocol.SignalRecovery method)

R

 	

 	r (slave.srs.sr830.SR830 attribute)

 	r_offset_and_expand (slave.srs.sr830.SR830 attribute)

 	Range (class in slave.cryomagnetics.mps4g)

 	

 	(class in slave.types)

 	RANGE (slave.lakeshore.ls370.Heater attribute)

 	read_bytes() (slave.transport.Transport method)

 	read_exactly() (slave.transport.Transport method)

 	read_until() (slave.transport.Transport method)

 	READING_STATUS (slave.lakeshore.ls340.InputChannel attribute)

 	recall() (slave.iec60488.StoredSetting method)

 	

 	(slave.srs.sr850.SR850 method)

 	recall_setup() (slave.srs.sr830.SR830 method)

 	redefine_position() (slave.quantum_design.ppms.PPMS method)

 	reference (slave.srs.sr830.SR830 attribute)

 	reference_trigger (slave.srs.sr830.SR830 attribute)

 	

 	Register (class in slave.types)

 	Relay (class in slave.lakeshore.ls370)

 	remote() (slave.cryomagnetics.mps4g.MPS4G method)

 	reserve (slave.srs.sr830.SR830 attribute)

 	reset() (slave.iec60488.IEC60488 method)

 	

 	(slave.signal_recovery.sr7225.SR7225 method)

 	reset_buffer() (slave.srs.sr830.SR830 method)

 	reset_configuration() (slave.srs.sr830.SR830 method)

 	reset_minmax() (slave.lakeshore.ls340.LS340 method)

 	

 	(slave.lakeshore.ls370.LS370 method)

 	reset_scan() (slave.srs.sr850.SR850 method)

 	ResourceDescription (class in slave.iec60488)

 	RS232 (slave.signal_recovery.sr7225.SR7225 attribute)

 	run() (slave.lakeshore.ls340.Program method)

S

 	

 	save() (slave.iec60488.StoredSetting method)

 	

 	(slave.srs.sr850.SR850 method)

 	save_curves() (slave.lakeshore.ls340.LS340 method)

 	save_setup() (slave.srs.sr830.SR830 method)

 	scan_field() (slave.quantum_design.ppms.PPMS method)

 	scan_temperature() (slave.quantum_design.ppms.PPMS method)

 	scanner (slave.lakeshore.ls340.LS340 attribute)

 	

 	(slave.lakeshore.ls370.LS370 attribute)

 	select() (slave.cryomagnetics.mps4g.Shim method)

 	send_mode (slave.srs.sr830.SR830 attribute)

 	sensitivity (slave.signal_recovery.sr7225.SR7225 attribute)

 	

 	(slave.signal_recovery.sr7230.Demodulator attribute)

 	(slave.signal_recovery.sr7230.SR7230 attribute)

 	(slave.srs.sr830.SR830 attribute)

 	SENSITIVITY_CURRENT_HIGHBW (slave.signal_recovery.sr7225.SR7225 attribute)

 	

 	(slave.signal_recovery.sr7230.SR7230 attribute)

 	SENSITIVITY_CURRENT_LOWNOISE (slave.signal_recovery.sr7225.SR7225 attribute)

 	

 	(slave.signal_recovery.sr7230.SR7230 attribute)

 	SENSITIVITY_VOLTAGE (slave.signal_recovery.sr7225.SR7225 attribute)

 	

 	(slave.signal_recovery.sr7230.SR7230 attribute)

 	Serial (class in slave.transport)

 	Set (class in slave.types)

 	set_field() (slave.quantum_design.ppms.PPMS method)

 	set_temperature() (slave.quantum_design.ppms.PPMS method)

 	Shim (class in slave.cryomagnetics.mps4g)

 	SHIMS (in module slave.cryomagnetics.mps4g)

 	shutdown() (slave.quantum_design.ppms.PPMS method)

 	SignalRecovery (class in slave.protocol)

 	simulate() (slave.types.Boolean method)

 	

 	(slave.types.Float method)

 	(slave.types.Integer method)

 	(slave.types.Mapping method)

 	(slave.types.Register method)

 	(slave.types.String method)

 	(slave.types.Type method)

 	simulate_query() (slave.core.Command method)

 	simulate_write() (slave.core.Command method)

 	SimulatedTransport (class in slave.transport)

 	SingleType (class in slave.types)

 	slave (module)

 	slave.core (module)

 	slave.cryomagnetics (module)

 	slave.cryomagnetics.mps4g (module)

 	slave.iec60488 (module)

 	slave.lakeshore (module)

 	slave.lakeshore.ls340 (module)

 	slave.lakeshore.ls370 (module)

 	slave.misc (module)

 	slave.protocol (module)

 	slave.quantum_design (module)

 	slave.quantum_design.ppms (module)

 	slave.signal_recovery (module)

 	slave.signal_recovery.sr7225 (module)

 	slave.signal_recovery.sr7230 (module)

 	

 	slave.srs (module)

 	slave.srs.sr830 (module)

 	slave.srs.sr850 (module)

 	slave.transport (module)

 	slave.types (module)

 	slope (slave.srs.sr830.SR830 attribute)

 	smooth() (slave.srs.sr850.SR850 method)

 	snap() (slave.srs.sr830.SR830 method)

 	

 	(slave.srs.sr850.SR850 method)

 	Socket (class in slave.transport)

 	softcal() (slave.lakeshore.ls340.LS340 method)

 	span_frequency (slave.signal_recovery.sr7230.FrequencyModulation attribute)

 	SR7225 (class in slave.signal_recovery.sr7225)

 	SR7230 (class in slave.signal_recovery.sr7230)

 	SR830 (class in slave.srs.sr830)

 	SR850 (class in slave.srs.sr850)

 	StandardBuffer (class in slave.signal_recovery.sr7230)

 	start() (slave.srs.sr830.SR830 method)

 	

 	(slave.srs.sr850.SR850 method)

 	start_afsweep() (slave.signal_recovery.sr7225.SR7225 method)

 	

 	(slave.signal_recovery.sr7230.SR7230 method)

 	start_asweep() (slave.signal_recovery.sr7225.SR7225 method)

 	

 	(slave.signal_recovery.sr7230.SR7230 method)

 	start_fsweep() (slave.signal_recovery.sr7225.SR7225 method)

 	

 	(slave.signal_recovery.sr7230.SR7230 method)

 	state (slave.srs.sr830.SR830 attribute)

 	Statistics (class in slave.srs.sr850)

 	STATUS_BYTE (slave.signal_recovery.sr7225.SR7225 attribute)

 	

 	(slave.signal_recovery.sr7230.SR7230 attribute)

 	STATUS_CHAMBER (in module slave.quantum_design.ppms)

 	STATUS_DIGITAL_INPUT (in module slave.quantum_design.ppms)

 	STATUS_DIGITAL_OUTPUT (in module slave.quantum_design.ppms)

 	STATUS_EXTERNAL_SELECT (in module slave.quantum_design.ppms)

 	STATUS_LINK (in module slave.quantum_design.ppms)

 	STATUS_MAGNET (in module slave.quantum_design.ppms)

 	STATUS_SAMPLE_POSITION (in module slave.quantum_design.ppms)

 	STATUS_TEMPERATURE (in module slave.quantum_design.ppms)

 	stop() (slave.signal_recovery.sr7225.SR7225 method)

 	

 	(slave.signal_recovery.sr7230.SR7230 method)

 	stop_program() (slave.lakeshore.ls340.LS340 method)

 	StoredSetting (class in slave.iec60488)

 	String (class in slave.types)

 	sweep() (slave.cryomagnetics.mps4g.MPS4G method)

 	sync (slave.srs.sr830.SR830 attribute)

 	system_status (slave.quantum_design.ppms.PPMS attribute)

 	SystemConfiguration (class in slave.iec60488)

T

 	

 	take_data() (slave.signal_recovery.sr7225.SR7225 method)

 	

 	(slave.signal_recovery.sr7230.SR7230 method)

 	take_data_continuously() (slave.signal_recovery.sr7230.SR7230 method)

 	take_data_triggered() (slave.signal_recovery.sr7225.SR7225 method)

 	

 	(slave.signal_recovery.sr7230.SR7230 method)

 	temperature (slave.quantum_design.ppms.PPMS attribute)

 	test() (slave.iec60488.IEC60488 method)

 	theta (slave.srs.sr830.SR830 attribute)

 	time (slave.quantum_design.ppms.PPMS attribute)

 	TIME_CONSTANT (slave.signal_recovery.sr7225.SR7225 attribute)

 	

 	(slave.signal_recovery.sr7230.SR7230 attribute)

 	time_constant (slave.srs.sr830.SR830 attribute)

 	

 	Trace (class in slave.srs.sr850)

 	trace() (slave.srs.sr830.SR830 method)

 	Transport (class in slave.transport)

 	Trigger (class in slave.iec60488)

 	trigger() (slave.iec60488.Trigger method)

 	

 	(slave.srs.sr830.SR830 method)

 	(slave.transport.LinuxGpib method)

 	TriggerMacro (class in slave.iec60488)

 	Type (class in slave.types)

 	type (slave.lakeshore.ls340.Column attribute)

U

 	

 	UnitFloat (class in slave.cryomagnetics.mps4g)

 	unlock_ip() (slave.signal_recovery.sr7230.SR7230 method)

 	

 	update_correction() (slave.signal_recovery.sr7230.SR7230 method)

V

 	

 	visa() (in module slave.transport)

 	Visa_1_4 (class in slave.transport)

 	

 	Visa_1_5 (class in slave.transport)

W

 	

 	wait_to_continue() (slave.iec60488.IEC60488 method)

 	

 	write() (slave.core.Command method)

 	

 	(Transport method)

 	(slave.protocol.IEC60488 method)

 	(slave.protocol.OxfordIsobus method)

 	(slave.protocol.Protocol method)

 	(slave.protocol.SignalRecovery method)

 	(slave.transport.Transport method)

X

 	

 	x (slave.srs.sr830.SR830 attribute)

 	

 	x_offset_and_expand (slave.srs.sr830.SR830 attribute)

Y

 	

 	y (slave.srs.sr830.SR830 attribute)

 	

 	y_offset_and_expand (slave.srs.sr830.SR830 attribute)

 Copyright 2012, Marco Halder.
 Created using Sphinx 1.2.2.

 _static/file.png

_static/minus.png

_static/comment-bright.png

_static/comment.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Slave »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Marco Halder.
 Created using Sphinx 1.2.2.

_static/plus.png

_static/up.png

_static/down.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/comment-close.png

_static/up-pressed.png

